Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase. 1976

G Dooijewaard, and E C Slater

(1) Studies of the steady-state kinetics of the NADH dehydrogenase activity of Complex I (NADH: Q oxidoreductase) revealed that the reaction mechanism with the one-electron acceptor ferricyanide or the two-electron acceptor 2,6-dichloro-indophenol is ping pong bi bi, with double substrate inhibition. NADH inhibits the reaction of the reduced form of the flavoprotein with the acceptors, and the acceptors prevent NADH from reacting with the oxidized form. This implies that both NADH and acceptors react with the same site on NADH dehydrogenase. (2) The velocity at infinite NADH and acceptor concentrations (corrected for the double substrate inhibition) is much larger with ferricyanide than with the indophenol. It is concluded that the latter binds to the reduced enzyme. Thus, with ferricyanide the rate constant measured refers to the dissociation of bound NAD+ from the reduced enzyme (k2) and with the indophenol to the rate constant of oxidation of reduced enzyme by bound acceptor (k4). The latter value is not an estimate for the situation in vivo, where ubiquinone is the acceptor. (3) The rate constant of the dissociation of bound NAD+ from the reduced enzyme (k2) increases with pH. It is suggested that an ionizing group on the enzyme is involved in the dissociation. (4) After extraction of ubiquinone from Complex I with pentane curve relating activity at infinite ferricyanide concentration to NADH concentration changes from hyperbolic to sigmoidal. The hyperbolic curve is restored by reincorporating ubiquinone. It is concluded that ubiquinone is an effector for NADH dehydrogenase.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Dooijewaard, and E C Slater
August 1994, Archives of biochemistry and biophysics,
G Dooijewaard, and E C Slater
May 1976, Biochimica et biophysica acta,
G Dooijewaard, and E C Slater
May 1976, Biochimica et biophysica acta,
G Dooijewaard, and E C Slater
January 2015, Biochemistry,
G Dooijewaard, and E C Slater
July 1978, Journal of neurochemistry,
G Dooijewaard, and E C Slater
July 1974, Biochimica et biophysica acta,
G Dooijewaard, and E C Slater
August 1977, Archives of biochemistry and biophysics,
Copied contents to your clipboard!