The chemistry of free-radical-mediated DNA damage. 1991

C von Sonntag
Max-Planck-Institut für Strahlenchemie, Mülheim a.d. Ruhr, Germany.

In the living cell, ionizing radiation can cause DNA damage by the direct effect (ionization of DNA) and the indirect effect (reaction of radicals formed in the neighborhood of DNA with DNA, e.g., OH, eaq-, H, protein- and glutathione-derived radicals). Properties of the base radical cations have been studied in model systems using SO4- radical to oxidize the nucleobases in aqueous solution. The pKa values of some nucleobase radical cations are reported, so are the ensuing reactions of the thymidine radical cation with water. The products of reactions are compared with those formed by OH radical attack. The reaction of eaq- with the nucleobases yields radical anions. Protonation at heteroatom sites and at carbon are discussed, and some recent results regarding the electron transfer to adjacent nucleobases as well as to 5-bromouracil are reported. A brief account is given on the reaction of carbon-centered radicals with the nucleobases. These reactions may mimic the reactions of protein-derived radicals with DNA. Glutathione is present in cells at rather high concentrations and is expected to act as an H- or electron-donor in repairing radiation-induced DNA damage (chemical repair). As thiyl radicals are known to also undergo the reverse reaction, i.e., H-abstraction from suitable solutes, some experiments are reported which probe this type of reaction with dilute DNA solutions. In some polynucleotides radical transfer from the base radical to the sugar moiety occurs with the consequence of strand breakage and base release. Some currently held mechanistic concepts are discussed. Attention is drawn to some important open questions which should be addressed in the near future.

UI MeSH Term Description Entries
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D003855 Deoxyribose 2-Deoxyribose,2 Deoxyribose
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

C von Sonntag
July 1989, The Biochemical journal,
C von Sonntag
August 1988, International journal of radiation biology,
C von Sonntag
December 1985, Environmental health perspectives,
C von Sonntag
January 1986, Basic life sciences,
C von Sonntag
January 2000, Progress in retinal and eye research,
C von Sonntag
January 1989, Microcirculation, endothelium, and lymphatics,
C von Sonntag
January 1998, BioFactors (Oxford, England),
C von Sonntag
May 2018, Photochemistry and photobiology,
Copied contents to your clipboard!