[Conformational analysis of a segment in bacterioopsin by two-dimensional (1)H-NMR spectroscopy]. 1991

I V Maslennikov, and A L Lomize, and A S Arsen'ev

The spatial structure of a synthetic peptide, an analogue of the membrane spanning segment B (residues 34-65) of bacterioopsin from Halobacterium halobium, has been refined. Backbone torsion angles were derived from intensities of short-range interproton NOEs. These, together with a complete set of the NOEs integral intensities formed the basis for the three-dimensional structure refinement by the energy minimization with consideration of NOE penalty functions. Analysis indicates the right-handed alpha-helical conformation of segment B extending from Asp-38 to Tyr-64 with a kink of the helical axis (27 degrees) at Pro-50. The most stable region with an average root-mean-square deviation of 0.43 A between the backbone atoms includes residues 42-60 in six energy refined structures. The N-terminal part of segment B (residues 34-37) has no ordered conformation. The inferred structure is in close agreement with the electron cryomicroscopy structure of bacteriorhodopsin, differing from it in conformations of most of the side chains.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001436 Bacteriorhodopsins Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS. Bacteriorhodopsin
D019617 Halobacterium salinarum A species of halophilic archaea found in salt lakes. Some strains form a PURPLE MEMBRANE under anaerobic conditions. Halobacterium halobium

Related Publications

I V Maslennikov, and A L Lomize, and A S Arsen'ev
September 1995, Journal of biomolecular NMR,
I V Maslennikov, and A L Lomize, and A S Arsen'ev
February 1994, European journal of biochemistry,
I V Maslennikov, and A L Lomize, and A S Arsen'ev
February 1992, Bioorganicheskaia khimiia,
I V Maslennikov, and A L Lomize, and A S Arsen'ev
February 2009, Solid state nuclear magnetic resonance,
I V Maslennikov, and A L Lomize, and A S Arsen'ev
August 1999, Journal of magnetic resonance (San Diego, Calif. : 1997),
I V Maslennikov, and A L Lomize, and A S Arsen'ev
November 1994, FEBS letters,
I V Maslennikov, and A L Lomize, and A S Arsen'ev
April 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!