Evidence that myenteric neurons of the gastric corpus project to both the mucosa and the external muscle: myectomy operations on the canine stomach. 1991

J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.

The distribution of nerve cell bodies and fibres in the canine stomach was investigated using antibodies to the general neuronal marker, neuron-specific enolase. Prominent ganglia containing many reactive nerve cells were found in the myenteric plexus of the gastric corpus and antrum. Nerve cells were absent from the submucosa of the corpus and were extremely rare in the antrum. Removal of areas of longitudinal muscle and myenteric plexus from the corpus (myectomy), with 7 days allowed for axon degeneration, resulted in the loss of fibres reactive for galanin, gastrin-releasing peptide, substance P and vasoactive intestinal peptide from both the circular muscle and mucosa in the area covered by the lesion. Combined vagotomy and sympathetic denervation did not significantly affect these fibres, but did cause fibres reactive for calcitonin gene-related peptide to degenerate. It is concluded that the myenteric plexus of the gastric corpus, like the myenteric plexus of the small intestine and colon, is the source of nerve fibres innervating the circular muscle, but, in contrast to other regions of the gastrointestinal tract, myenteric ganglia, not submucous ganglia, are the major, or sole, source of the intrinsic innervation of the mucosa.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D010751 Phosphopyruvate Hydratase A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity. Enolase,Neuron-Specific Enolase,2-Phospho-D-Glycerate Hydro-Lyase,2-Phospho-D-Glycerate Hydrolase,2-Phosphoglycerate Dehydratase,Enolase 2,Enolase 3,Muscle-Specific Enolase,Nervous System-Specific Enolase,Non-Neuronal Enolase,alpha-Enolase,beta-Enolase,gamma-Enolase,2 Phospho D Glycerate Hydro Lyase,2 Phospho D Glycerate Hydrolase,2 Phosphoglycerate Dehydratase,Dehydratase, 2-Phosphoglycerate,Enolase, Muscle-Specific,Enolase, Nervous System-Specific,Enolase, Neuron-Specific,Enolase, Non-Neuronal,Hydratase, Phosphopyruvate,Hydro-Lyase, 2-Phospho-D-Glycerate,Muscle Specific Enolase,Nervous System Specific Enolase,Neuron Specific Enolase,Non Neuronal Enolase,System-Specific Enolase, Nervous,alpha Enolase,beta Enolase,gamma Enolase
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs
D014628 Vagotomy The interruption or removal of any part of the vagus (10th cranial) nerve. Vagotomy may be performed for research or for therapeutic purposes. Vagotomies
D014660 Vasoactive Intestinal Peptide A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE). VIP (Vasoactive Intestinal Peptide),Vasoactive Intestinal Polypeptide,Vasointestinal Peptide,Intestinal Peptide, Vasoactive,Intestinal Polypeptide, Vasoactive,Peptide, Vasoactive Intestinal,Peptide, Vasointestinal,Polypeptide, Vasoactive Intestinal

Related Publications

J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
July 1973, The Alabama journal of medical sciences,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
July 1991, Pflugers Archiv : European journal of physiology,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
August 1991, Neuroscience letters,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
October 1994, Neuroscience letters,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
January 1997, Neuroscience,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
September 1963, The American journal of physiology,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
March 2001, American journal of physiology. Gastrointestinal and liver physiology,
J B Furness, and K C Lloyd, and C Sternini, and J H Walsh
December 1992, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!