Bypass of a primase requirement for bacteriophage T4 DNA replication in vivo by a recombination enzyme, endonuclease VII. 1991

G Mosig, and A Luder, and A Ernst, and N Canan
Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235.

A primase, the product of phage T4 gene 61, is required to initiate synthesis of Okazaki pieces and to allow bidirectional replication from several T4 origins. However, primase-defective T4 gene 61 mutants are viable. In these mutants, leading-strand DNA synthesis starts at the same time as in wild type infections, but, in contrast to wild type, initiation is unidirectional and the first replicative intermediates are large displacement loops. Rapid double-strand DNA replication occurs later after infection, generating multiple branched concatemers, which are cut and packaged into viable progeny particles, as in wild-type T4. Evidence is presented that this late double-strand DNA replication requires functional endonuclease VII (endo VII), the product of the T4 gene 49. We propose that endo VII can provide a backup mechanism when primase is defective, because it cuts recombinational junctions, generating 3' ends. These ends can prime DNA synthesis to copy the DNA strands that had been displaced during the initial origin-dependent replication. We explain the DNA-delay phenotype and the commonly observed temperature dependence of DNA replication in primase-deficient gene 61 mutants as a consequence of temperature-dependent translational control of gene 49 expression. In the presence or absence of functional primase endo VII is essential for correct packaging of DNA. The powerful selection that keeps the function of endo VII and expression of its gene at levels that are optimal for T4 development determines both the efficiency and the limitations of the bypass mechanism.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA

Related Publications

G Mosig, and A Luder, and A Ernst, and N Canan
January 1986, Acta microbiologica Polonica,
G Mosig, and A Luder, and A Ernst, and N Canan
January 1998, Annual review of genetics,
G Mosig, and A Luder, and A Ernst, and N Canan
January 1979, Cold Spring Harbor symposia on quantitative biology,
G Mosig, and A Luder, and A Ernst, and N Canan
January 1995, Methods in enzymology,
G Mosig, and A Luder, and A Ernst, and N Canan
January 1968, Cold Spring Harbor symposia on quantitative biology,
G Mosig, and A Luder, and A Ernst, and N Canan
February 1983, Journal of virology,
G Mosig, and A Luder, and A Ernst, and N Canan
October 1995, Journal of molecular biology,
G Mosig, and A Luder, and A Ernst, and N Canan
March 1997, Journal of molecular biology,
G Mosig, and A Luder, and A Ernst, and N Canan
December 1995, Journal of bacteriology,
Copied contents to your clipboard!