Secretion-related uptake of horseradish peroxidase in neurohypophysial axons. 1976

D T Theodosis, and J Dreifuss, and M C Harris, and L Orci

During secretion of the neurohypophysial hormones, oxytocin and vasopressin, secretory granule membrane is added to the plasma membrane of the axon terminals. It is generally assumed that subsequent internalization of this additional membrane occurs by endocytosis. In order to study this process, we have traced the uptake of intravenously injected horseradish peroxidase by neurohypophysial axons in rats and golden hamsters. Peroxidase reaction product within the secretory axons was found mainly in vacuolar and C-shaped structures of a size comparable with or larger than the neurosecretory granules. Our observations suggest that these large horseradish peroxidase (HRP)-impregnated vacuoles arise directly by a form of macropinocytosis. Morphometric analysis indicated that this form of membrane retrieval increased significantly after the two types of stimuli used, reversible hemorrhage and electrical stimulation of the pituitary stalk. Microvesicular uptake of HRP was found to be comparatively less.

UI MeSH Term Description Entries
D008297 Male Males
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D002479 Inclusion Bodies A generic term for any circumscribed mass of foreign (e.g., lead or viruses) or metabolically inactive materials (e.g., ceroid or MALLORY BODIES), within the cytoplasm or nucleus of a cell. Inclusion bodies are in cells infected with certain filtrable viruses, observed especially in nerve, epithelial, or endothelial cells. (Stedman, 25th ed) Cellular Inclusions,Cytoplasmic Inclusions,Bodies, Inclusion,Body, Inclusion,Cellular Inclusion,Cytoplasmic Inclusion,Inclusion Body,Inclusion, Cellular,Inclusion, Cytoplasmic,Inclusions, Cellular,Inclusions, Cytoplasmic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006470 Hemorrhage Bleeding or escape of blood from a vessel. Bleeding,Hemorrhages
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
September 1977, Experimental brain research,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
January 1983, Journal of neuroscience methods,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
February 1978, Biochemical and biophysical research communications,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
December 1976, Brain research,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
April 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
May 1986, Experimental cell research,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
February 1982, Brain research,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
November 1980, Neuroscience letters,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
January 1972, Laboratory investigation; a journal of technical methods and pathology,
D T Theodosis, and J Dreifuss, and M C Harris, and L Orci
December 1978, Brain research,
Copied contents to your clipboard!