Induction of cholinergic enzymes in chick ciliary ganglion and iris muscle cells during synapse formation. 1976

V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura

1. In chick ciliary ganglia and irises, cholineacetyltransferase (ChAc) and acetylcholinesterase (AChE) activities were measured from the fifth day of incubation until 1 week after hatching. The changes in enzyme activity were correlated in time with previous electrophysiological and morphological findings of synapse formation in these tissues. 2. At Stage 26 (Hamburger & Hamilton, 1951; before synapse formation in the ganglia) low activities of ChAc (12 +/- 4 [mean +/- S.E.] p-mole of ACh synthesized/hr) were measured in the iris nerve terminals, indicating that ganglion cells are biochemically differentiated, immediately after cell migration is completed. The specific acitivities of ChAc and AChE rose during development and these increases were closely related to the onset and maturation of ganglionic and iris synaptic transmission. These increases in enzyme activities can be used in cholinergic synapses as an index of synapse formation. 3. The 200-fold specific increase of ChAc in iris nerve terminals which occurs at Stage 34 probably reflects an increase in synthesis of the enzyme in ganglion cells and suggests that the formation of the iris neuromuscular junction triggers the enzyme induction. It is implied that the cell responds to a signal ascending the axon from the terminal. 4. The initial increase of AChE specific activity in the ganglion occurs after transmission is established in all cells between Stage 30 and 34 and is mainly due to enzyme synthesis by the ganglion cells. In the iris there is a twofold increase in specific activity after the formation of neuromuscular junctions which probably reflects enzyme induction in the muscle subneural region. It is concluded that the specific induction of AChE in post-junctional cells is due to an influence of the prejunctional element. 5. During synaptic formation in the ciliary ganglion, reciprocal interactions between the neurones and their targets result in the induction of ChAc in the prejunctional elements and AChE in the post-junctional cells.

UI MeSH Term Description Entries
D007498 Iris The most anterior portion of the uveal layer, separating the anterior chamber from the posterior. It consists of two layers - the stroma and the pigmented epithelium. Color of the iris depends on the amount of melanin in the stroma on reflection from the pigmented epithelium.
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D002924 Ciliary Body A ring of tissue extending from the scleral spur to the ora serrata of the RETINA. It consists of the uveal portion and the epithelial portion. The ciliary muscle is in the uveal portion and the ciliary processes are in the epithelial portion. Corpus Ciliare,Corpus Ciliaris,Bodies, Ciliary,Body, Ciliary,Ciliare, Corpus,Ciliares, Corpus,Ciliari, Corpus,Ciliaris, Corpus,Ciliary Bodies,Corpus Ciliares,Corpus Ciliari
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine

Related Publications

V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
January 1992, Canadian journal of physiology and pharmacology,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
November 1982, Developmental biology,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
November 1977, Proceedings of the National Academy of Sciences of the United States of America,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
January 1968, Transactions of the American Ophthalmological Society,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
September 1982, Brain research,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
May 1990, Neuroscience letters,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
January 1986, Developmental neuroscience,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
January 1978, Biochemical Society transactions,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
July 1981, Neuroscience letters,
V Chiappinelli, and E Giacobini, and G Pilar, and H Uchimura
April 1980, Developmental biology,
Copied contents to your clipboard!