mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli. 2009

Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India.

Organophosphate hydrolases (OPHs), involved in hydrolytic cleavage of structurally diverse organophosphates are coded by a plasmid borne, highly conserved organophosphate degrading (opd) gene. An inverted repeat sequence found in the signal coding region of the opd gene was found to be responsible for inducing a stable stem loop structure with a DeltaG of -23.1 kcal/mol. This stem loop structure has shown significant influence on the expression levels of organophosphate hydrolase (OPH) in E. coli. When the signal coding region comprising the inverted repeat sequence was deleted a approximately 3.28 fold increase in the expression levels of OPH was noticed in E. coli BL21 cells. Mutations in the inverted repeat region, especially at the third position of the codon, to a non-complementary base destabilized the secondary structure of opd mRNA. When such opd variant, opd' was expressed, the expression levels were found to be similar to expression levels coded by the construct generated by deleting the signal peptide coding region. Deletion of signal peptide did not influence the folding and activity of OPH. Though high level induction has resulted in accumulation of OPH as inclusion bodies, modulation of expression levels by reducing the copy number of the expression plasmid, inducer concentration and growth temperature has produced majority of the protein in soluble and active form.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
October 2021, Protein expression and purification,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
September 2004, Journal of bacteriology,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
February 2011, Science (New York, N.Y.),
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
January 1995, Nucleic acids symposium series,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
March 1994, Journal of bacteriology,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
May 2020, Wiley interdisciplinary reviews. RNA,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
March 2014, Applied microbiology and biotechnology,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
November 1994, Journal of molecular biology,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
April 1980, Gene,
Jay Prakash Pandey, and Purushotham Gorla, and Bramanandam Manavathi, and Dayananda Siddavattam
August 2014, eLife,
Copied contents to your clipboard!