Effects of dopaminergic stimulants on cyclic nucleotide levels in mouse brain in vivo. 1976

S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer

Dopaminergic stimulants (amantadine, amphetamine, apomorphine, nomifensine and L-dopa plus benserazide) increased cyclic GMP levels in the medial forebrain and cerebellum of mice. Cyclic AMP levels were not significantly altered under these conditions. Drug-induced stereotyped behaviour correlated in intensity and duration to the changes in cyclic GMP levels in the medial forebrain. Amantadine, apomorphine and nomifensine showed a linear dose response relationship, but differed as to the extent and time course of the increase in cyclic GMP. Amantadine and apomorphine were were more effective in elevating cyclic GMP in the medial forebrain than in the cerebellum. Amphetamine produced an exponential dose-related elevation of cyclic GMP in both parts of the brain, being more effective in the cerebellum than in the medial forebrain at high doses, thus indicating a complex mechanism of action. L-Dopa (50 mg/kg) and benserazide (40 mg/kg) alone did neither significantly increase cyclic GMP levels nor induce stereotyped behaviour. However, in animals pretreated with benserazide (15 min prior to L-odopa) L-dopa produced a significant elevation of cyclic GMP and stereotyped behaviour.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008297 Male Males
D009712 Nucleotides, Cyclic Cyclic Nucleotide,Cyclic Nucleotides,Nucleotide, Cyclic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
December 1975, Brain research,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
June 1967, Quarterly journal of studies on alcohol,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
September 1978, Biochemical and biophysical research communications,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
December 1979, Neuropharmacology,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
September 1988, Biulleten' eksperimental'noi biologii i meditsiny,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
March 1981, Journal of neurochemistry,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
December 1977, Epilepsia,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
April 1984, Investigative ophthalmology & visual science,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
September 1978, Cancer research,
S W Gumulka, and V Dinnendahl, and H D Peters, and P S Schönhöfer
May 1978, Endocrinology,
Copied contents to your clipboard!