Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. 2008

Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.

Type IV pili are retractable protein fibres used by many bacterial pathogens for adherence, twitching motility, biofilm development and host colonization. In Pseudomonas aeruginosa, PilB and PilT are bipolar proteins belonging to the secretion NTPase superfamily, and power pilus extension and retraction, respectively, while the unipolar PilT paralogue PilU supports pilus retraction in an unknown manner. Assay of purified 6xHis-tagged PilB, PilT and PilU from P. aeruginosa showed that all three proteins have ATPase activities in vitro. Conserved residues in the Walker A (WA), Walker B (WB), Asp Box and His Box motifs characteristic of secretion NTPases were mutated, and complementation of twitching motility was tested. Mutation of conserved WA or WB residues in any of the three ATPases abrogated twitching motility, and for the WA mutant of PilT caused loss of polar localization. The requirement for three invariant acidic residues in the Asp Box motif, and for two invariant His residues in the His Box motif varied, with PilB being the least tolerant of changes. In all three proteins, the third acidic residue in the Asp Box and the second His of the His Box were crucial for function; mutation of these residues caused loss of PilT ATPase activity in vitro. Modelling of the effects of these mutations on the crystal structures of Aquifex aeolicus PilT and Vibrio cholerae EpsE (a PilB homologue) showed that the critical Asp Box and His Box residues contribute to a catalytic pocket that surrounds the ligand. These results provide experimental evidence differentiating widely conserved Asp and His Box residues that are essential for function from those whose roles are modulated by specific local environments.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
September 2019, PLoS genetics,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
April 2008, Journal of bacteriology,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
July 2023, Journal of bacteriology,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
February 2013, Applied microbiology and biotechnology,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
July 2010, Journal of molecular biology,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
August 2001, Journal of bacteriology,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
November 2008, Journal of bacteriology,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
April 2013, Biochemistry,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
November 2019, Nature communications,
Poney Chiang, and Liliana M Sampaleanu, and Melissa Ayers, and Markian Pahuta, and P Lynne Howell, and Lori L Burrows
June 2018, The Biochemical journal,
Copied contents to your clipboard!