Synthesis and biological evaluation of trimethyl-substituted cap analogs. 2008

Anilkumar R Kore, and Muthian Shanmugasundaram
Ambion, Inc., An Applied Biosystems Business, Bioorganic Chemistry Division, 2130 Woodward Street, Austin, TX 78744-1832, USA. anil.kore@appliedbiosystems.com

The N(7)-methyl guanosine cap located on the 5'-terminus of mRNAs is important for a number of biochemical processes. A new dinucleoside triphosphate cap analog was synthesized with methyl groups on the N(7) of both guanine moieties, as well as the 3'-OH of one of the ribose moieties [see text]. The function of this trimethylated cap analog was compared with those of three other, less-methylated cap analogs: one omitting the ribose methylation (m(7)G[5']ppp[5']m(7)G), one omitting the N(7) methylation linked to the unmodified ribose [see text], and the standard cap analog, m(7)G[5']ppp[5']G. These cap modifications were assayed with respect to their effects on capping efficiency, yield of RNAs during in vitro transcription, and the translational activity of these RNAs upon transfection into HeLa cells. The translational activity was monitored by measuring the luciferase activity of a luciferase-fusion protein produced from the in vitro synthesized RNAs. The RNA capped with the trimethylated analog [see text] was translated the most efficiently, with approximately 2.6-fold more activity than the conventional cap (m(7)G[5']ppp[5']G). The other two variants were also more efficient, generating, approximately 2.2 times (for the [see text] analog) and, approximately 1.6 times (for the m(7)G[5']ppp[5']m(7)G analog) more luciferase function than the conventional cap.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D006147 Guanine
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012314 RNA Cap Analogs Analogs of RNA cap compounds which do not have a positive charge. These compounds inhibit the initiation of translation of both capped and uncapped messenger RNA. RNA Cap Analogues,Analogs, RNA Cap,Analogues, RNA Cap,Cap Analogs, RNA,Cap Analogues, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

Anilkumar R Kore, and Muthian Shanmugasundaram
August 2013, Bioorganic & medicinal chemistry,
Anilkumar R Kore, and Muthian Shanmugasundaram
July 2011, Biochemical pharmacology,
Anilkumar R Kore, and Muthian Shanmugasundaram
January 2009, Advances in experimental medicine and biology,
Anilkumar R Kore, and Muthian Shanmugasundaram
December 2011, Bioorganic & medicinal chemistry,
Anilkumar R Kore, and Muthian Shanmugasundaram
April 2004, Organic & biomolecular chemistry,
Anilkumar R Kore, and Muthian Shanmugasundaram
February 2019, Chemistry & biodiversity,
Anilkumar R Kore, and Muthian Shanmugasundaram
December 2009, Chemical & pharmaceutical bulletin,
Anilkumar R Kore, and Muthian Shanmugasundaram
March 2009, Bioorganic & medicinal chemistry letters,
Anilkumar R Kore, and Muthian Shanmugasundaram
July 1996, The Journal of antibiotics,
Copied contents to your clipboard!