| D008279 |
Magnetic Resonance Imaging |
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. |
Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI |
|
| D008297 |
Male |
|
Males |
|
| D002534 |
Hypoxia, Brain |
A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. |
Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies |
|
| D003937 |
Diagnosis, Differential |
Determination of which one of two or more diseases or conditions a patient is suffering from by systematically comparing and contrasting results of diagnostic measures. |
Diagnoses, Differential,Differential Diagnoses,Differential Diagnosis |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000368 |
Aged |
A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. |
Elderly |
|
| D014899 |
Wernicke Encephalopathy |
An acute neurological disorder characterized by the triad of ophthalmoplegia, ataxia, and disturbances of mental activity or consciousness. Eye movement abnormalities include nystagmus, external rectus palsies, and reduced conjugate gaze. THIAMINE DEFICIENCY and chronic ALCOHOLISM are associated conditions. Pathologic features include periventricular petechial hemorrhages and neuropil breakdown in the diencephalon and brainstem. Chronic thiamine deficiency may lead to KORSAKOFF SYNDROME. (Adams et al., Principles of Neurology, 6th ed, pp1139-42; Davis & Robertson, Textbook of Neuropathology, 2nd ed, pp452-3) |
Beriberi, Cerebral,Encephalopathy, Wernicke,Encephalopathy, Gayet-Wernicke,Encephalopathy, Wernicke's,Gayet-Wernicke Encephalopathy,Wernicke Disease,Wernicke Polioencephalitis, Superior Hemorrhagic,Wernicke Superior Hemorrhagic Polioencephalitis,Wernicke Syndrome,Wernicke's Disease,Wernicke's Encephalopathy,Wernicke's Polioencephalitis, Superior Hemorrhagic,Wernicke's Superior Hemorrhagic Polioencephalitis,Wernicke's Syndrome,Cerebral Beriberi,Encephalopathies, Wernicke,Encephalopathy, Gayet Wernicke,Encephalopathy, Wernickes,Gayet Wernicke Encephalopathy,Wernicke Encephalopathies |
|