Effects of acute hypoxia on intracellular-pH regulation in astrocytes cultured from rat hippocampus. 2008

Mark O Bevensee, and Walter F Boron
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA. bevensee@physiology.uab.edu

We used the pH-sensitive dye BCECF to evaluate the effect of acute (5-10 min) hypoxia (approximately 3% O(2)) on the regulation of intracellular pH (pH(i)) in astrocyte populations cultured from rat hippocampus. For cells in the nominal absence of CO(2)/HCO(3)(-) at an extracellular pH of 7.40 (37 degrees C), acute hypoxia caused a small (0.05) decrease in steady-state pH(i), but increased the pH(i) recovery rate from an acid load during all but the late phase of the pH(i) recovery. During such pH(i) recoveries, the total acid extrusion rate (phi(E), the product of dpH(i)/dt and proton buffering power) decreased with increasing pH(i). Hypoxia alkali shifted the plot of phi(E) vs. pH(i); over the upper approximately 85% of the phi(E) range, this shift was 0.15-0.30. Hypoxia also stimulated the pH(i) recovery rate from an alkali load. Under normoxic conditions, switching the extracellular buffer to 5% CO(2)/22 mM HCO(-)(3) also alkali shifted the phi(E)-pH(i) plot (upper approximately 85%) by 0.4-0.5. Superimposing hypoxia on CO(2)/HCO(-)(3) further alkali shifted the phi(E)-pH(i) plot (upper approximately 85% of the phi(E) range) by 0.05-0.15. The SITS-insensitive component of phi(E) was alkali shifted by 0.20-0.30, whereas the SITS-sensitive component of phi(E) was depressed in the low pH(i) range. Thus, in the nominal absence of CO(2)/HCO(3)(-), acute hypoxia has little effect on steady-state pH(i) but stimulates acid extrusion and acid loading, whereas in the presence of CO(2)/HCO(-)(3), hypoxia stimulates the SITS-insensitive but inhibits the SITS-sensitive acid extrusion.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

Mark O Bevensee, and Walter F Boron
August 1993, Glia,
Mark O Bevensee, and Walter F Boron
January 1989, Acta physiologica Scandinavica. Supplementum,
Mark O Bevensee, and Walter F Boron
January 1993, Experimental brain research,
Mark O Bevensee, and Walter F Boron
January 1994, Acta neurochirurgica. Supplementum,
Mark O Bevensee, and Walter F Boron
May 1991, Neuroscience letters,
Mark O Bevensee, and Walter F Boron
November 1994, Glia,
Mark O Bevensee, and Walter F Boron
May 1995, Journal of applied physiology (Bethesda, Md. : 1985),
Mark O Bevensee, and Walter F Boron
January 2000, Molecular membrane biology,
Mark O Bevensee, and Walter F Boron
June 1995, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!