Cost- and time-effective three-dimensional bone-shape reconstruction from X-ray images. 2007

Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

BACKGROUND Three-dimensional (3D) bone shapes need to be created for visualization and pre-operative surgery planning. Conventionally such shape data is extracted from volumetric data sets, obtained by three-dimensional sensors, such as computerized tomography (CT) and magnetic resonance imaging (MRI). This conventional method is highly labor intensive and time consuming. METHODS This paper presents a cost- and time-effective computational method for generating a 3D bone shape from multiple X-ray images. Starting with a predefined 3D template bone shape that is clinically normal and scaled to an average size, our method scales and deforms the template shape until the deformed shape gives an image similar to an input X-ray image when projected onto a two-dimensional (2D) plane. The hierarchical freeform deformation method is used to scale and deform the template bone. The problem of finding the 3D shape of the bond is reduced to a sequence of optimization problems. The objective of this optimization is to minimize the error between the input X-ray image and the projected image of the deformed template shape. The sequential quadratic programming (SQP) is used to solve this multi-dimentional optimization problem. RESULTS The proposed X-ray image-based shape reconstruction is more computationally efficient, cost-effective and portable compared to the conventional CT- or MRI-based methods. Within a couple of minutes with a standard personal computer, the proposed method generates a 3D bone shape that is sufficiently accurate for many applications, such as (a) making a 3D physical mock-up for training and (b) importing into, and using in, a computer-aided planning system for orthopedic surgery, including bone distraction and open/closed wedge osteotomy. CONCLUSIONS Because the proposed method requires only a small number of X-ray images and a minimum input from the user, the method can serve as a cost- and time-effective 3D bone shape reconstruction method for various medical applications.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011857 Radiographic Image Interpretation, Computer-Assisted Computer systems or networks designed to provide radiographic interpretive information. Computer Assisted Radiographic Image Interpretation,Computer-Assisted Radiographic Image Interpretation,Radiographic Image Interpretation, Computer Assisted
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003362 Cost-Benefit Analysis A method of comparing the cost of a program with its expected benefits in dollars (or other currency). The benefit-to-cost ratio is a measure of total return expected per unit of money spent. This analysis generally excludes consideration of factors that are not measured ultimately in economic terms. In contrast a cost effectiveness in general compares cost with qualitative outcomes. Cost and Benefit,Cost-Benefit Data,Benefits and Costs,Cost Benefit,Cost Benefit Analysis,Cost-Utility Analysis,Costs and Benefits,Economic Evaluation,Marginal Analysis,Analyses, Cost Benefit,Analysis, Cost Benefit,Analysis, Cost-Benefit,Analysis, Cost-Utility,Analysis, Marginal,Benefit and Cost,Cost Benefit Analyses,Cost Benefit Data,Cost Utility Analysis,Cost-Benefit Analyses,Cost-Utility Analyses,Data, Cost-Benefit,Economic Evaluations,Evaluation, Economic,Marginal Analyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013977 Tibia The second longest bone of the skeleton. It is located on the medial side of the lower leg, articulating with the FIBULA laterally, the TALUS distally, and the FEMUR proximally. Tibias
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014481 United States A country in NORTH AMERICA between CANADA and MEXICO.
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
July 2011, Applied optics,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
April 2007, Journal of spinal disorders & techniques,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
December 2008, Journal of applied crystallography,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
August 2007, Applied optics,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
November 1971, The British journal of radiology,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
March 2023, Biomedical engineering online,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
October 1983, American journal of orthodontics,
Murat Gunay, and Mun-Bo Shim, and Kenji Shimada
October 1983, American journal of orthodontics,
Copied contents to your clipboard!