Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats. 2008

L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
School of Psychology, University of Sydney, Griffith Taylor Building (A18), NSW 2006, Australia. l.staples@unsw.edu.au

Cat odor and trimethylthiazoline (TMT, a component of fox feces) are two stimuli widely used in rodent models of fear and anxiety. Recent studies suggest that these odorants have distinct behavioral effects, raising questions as to whether TMT is a true "predator odor." Here we used c-Fos immunohistochemistry to compare patterns of neural activation produced by cat odor and TMT. Rats were exposed to either (1) three pieces of a collar that had been worn by a domestic cat, (2) three collar pieces impregnated with TMT (30 microl/piece), (3) three collar pieces impregnated with 4% formaldehyde (200 microl/piece, an acrid but non-predatory odor), or (4) three control (no odor) collar pieces. Odors were presented in a small well-ventilated plastic box. All odorants (cat odor, TMT and formaldehyde) produced increased defecation in rats compared with the control group, and formaldehyde exposure also decreased rearing. Cat odor increased contact with the stimulus relative to all other groups, while TMT increased contact compared with the formaldehyde and clean air groups. Only cat odor decreased grooming and elicited escape attempts. In addition, only cat odor caused pronounced activation of Fos in the accessory olfactory bulb and its projection areas, anterior olfactory nucleus, medial prefrontal cortex, striatum, and a medial hypothalamic circuit associated with defensive behavior. In contrast, the only areas activated by TMT were the internal granular layer of the main olfactory bulb and central amygdala, while both cat odor and TMT activated the glomeruli of the main olfactory bulb, piriform cortex, ventral orbital cortex and anterior cortical amygdala. Results indicate that the effects of cat odor and TMT are easily distinguished both behaviorally and at a neural level, and suggest that TMT lacks the "pheromone-like" quality of cat odor that engages key hypothalamic sites involved in defensive behavior.

UI MeSH Term Description Entries
D008297 Male Males
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004924 Escape Reaction Innate response elicited by sensory stimuli associated with a threatening situation, or actual confrontation with an enemy. Flight Reaction,Escape Reactions,Flight Reactions,Reaction, Escape,Reaction, Flight,Reactions, Escape,Reactions, Flight
D005589 Foxes Any of several carnivores in the family CANIDAE, that possess erect ears and long bushy tails and are smaller than WOLVES. They are classified in several genera and found on all continents except Antarctica. Alopex,Arctic Fox,Pseudalopex,Red Fox,Urocyon,Vulpes,Vulpes vulpes,Fox, Arctic,Fox, Red
D000374 Aggression Behavior which may be manifested by destructive and attacking action which is verbal or physical, by covert attitudes of hostility or by obstructionism. Aggressions
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
April 2011, Neurobiology of aging,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
February 2002, Behavioural brain research,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
August 2005, Behavioral neuroscience,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
August 2006, NeuroImage,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
February 2005, Physiology & behavior,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
September 2013, Behavioural brain research,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
October 2000, Behavioral neuroscience,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
February 2015, Behavioural brain research,
L G Staples, and I S McGregor, and R Apfelbach, and G E Hunt
July 2012, Behavioural processes,
Copied contents to your clipboard!