Quantitative genetic analysis of life-history traits of Caenorhabditis elegans in stressful environments. 2008

Simon C Harvey, and Alison Shorto, and Mark E Viney
School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK. Simon.Harvey@bristol.ac.uk

BACKGROUND Organisms live in environments that vary. For life-history traits that vary across environments, fitness will be maximised when the phenotype is appropriately matched to the environmental conditions. For the free-living nematode Caenorhabditis elegans, we have investigated how two major life-history traits, (i) the development of environmentally resistant dauer larvae and (ii) reproduction, respond to environmental stress (high population density and low food availability), and how these traits vary between lines and the genetic basis of this variation. RESULTS We found that lines of C. elegans vary in their phenotypic plasticity of dauer larva development, i.e. there is variation in the likelihood of developing into a dauer larva for the same environmental change. There was also variation in how lifetime fecundity and the rate of reproduction changed under conditions of environmental stress. These traits were related, such that lines that are highly plastic for dauer larva development also maintain a high population growth rate when stressed. We identified quantitative trait loci (QTL) on two chromosomes that control the dauer larva development and population size phenotypes. The QTLs affecting the dauer larva development and population size phenotypes on chromosome II are closely linked, but are genetically separable. This chromosome II QTL controlling dauer larva development does not encompass any loci previously identified to control dauer larva development. This chromosome II region contains many predicted 7-transmembrane receptors. Such proteins are often involved in information transduction, which is clearly relevant to the control of dauer larva development. CONCLUSIONS C. elegans alters both its larval development and adult reproductive strategy in response to environmental stress. Together the phenotypic and genotypic data suggest that these two major life-history traits are co-ordinated responses to environmental stress and that they are, at least in part, controlled by the same genomic regions.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004777 Environment The external elements and conditions which surround, influence, and affect the life and development of an organism or population. Environmental Impact,Environmental Impacts,Impact, Environmental,Impacts, Environmental,Environments
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic
D040641 Quantitative Trait Loci Genetic loci associated with a quantitative trait. Quantitative Trait Loci Genes,Loci, Quantitative Trait,Locus, Quantitative Trait,Quantitative Trait Locus,Trait Loci, Quantitative,Trait Locus, Quantitative

Related Publications

Simon C Harvey, and Alison Shorto, and Mark E Viney
March 1996, Genetics,
Simon C Harvey, and Alison Shorto, and Mark E Viney
January 2015, PloS one,
Simon C Harvey, and Alison Shorto, and Mark E Viney
April 2007, Heredity,
Simon C Harvey, and Alison Shorto, and Mark E Viney
January 2015, PloS one,
Simon C Harvey, and Alison Shorto, and Mark E Viney
November 1982, Proceedings of the National Academy of Sciences of the United States of America,
Simon C Harvey, and Alison Shorto, and Mark E Viney
January 1999, Genetics,
Simon C Harvey, and Alison Shorto, and Mark E Viney
June 1993, Genetics,
Simon C Harvey, and Alison Shorto, and Mark E Viney
January 1987, Evolution; international journal of organic evolution,
Simon C Harvey, and Alison Shorto, and Mark E Viney
September 2001, Evolution; international journal of organic evolution,
Copied contents to your clipboard!