Role of membranes in bile formation. Comparison of the composition of bile and a liver bile-canalicular plasma-membrane subfraction. 1976

W H Evans, and T Kremmmer, and J G Culvenor

1. Enzymes, proteins, glycoproteins and lipids of rodent bile were compared with those of a plasma-membrane subfraction originating from the hepatocyte bile-canalicular membrane. 2. Three bile-canalicular glycoprotein enzyme activities were detected in bile. Comparison of the pH optimum and immunoinhibition properties of membrane and bile 5'-nucleotidase activity indicated that they were the same enzyme. Correspondence between membrane and bile alkaline phosphodiesterases also suggested that they were the same enzymes. Activities of Mg2+-stimulated adenosine triphosphatase, a lipid-dependent intrinsic membrane protein, and galactosyltransferase, a Golgi membrane marker, were not detected in bile. 3. Rodent bile contained 15 polypeptide bands that differed radically from those of bile-canalicular membranes. Bands that may correspond in molecular weight to liver plasma-membrane glycoproteins were present at low staining intensities in bile. A major protein of apparent molecular weight 49 500 was present, and albumin was detected by immunodiffusion. 4. The lipid composition of bile and bile-canalicular membrane also differed. Phosphatidylcholine accounted for 82% of rat bile phospholipids, and only trace amounts of phosphatidylinositol, phosphatidylserine and sphingomyelin were present. 5. The results indicate that in healthy animals, the bile-canalicular membrane is refractory to the action of bile acids during the secretory process. The presence of only small amounts of bile-canalicular membrane components, especially glycoprotein enzymes located at the outer face of the membrane, suggests that these are released from the membrane by bile acids after secretion of bile into the canalicular spaces.

UI MeSH Term Description Entries
D007931 Leucyl Aminopeptidase A zinc containing enzyme of the hydrolase class that catalyzes the removal of the N-terminal amino acid from most L-peptides, particularly those with N-terminal leucine residues but not those with N-terminal lysine or arginine residues. This occurs in tissue cell cytosol, with high activity in the duodenum, liver, and kidney. The activity of this enzyme is commonly assayed using a leucine arylamide chromogenic substrate such as leucyl beta-naphthylamide. Cytosol Aminopeptidase,Leucine Aminopeptidase,L-Leucylnaphthylamidase,Methoxyleucine Aminopeptidase,Peptidase S,Zinc-Manganese-Leucine Aminopeptidase,Aminopeptidase, Cytosol,Aminopeptidase, Leucine,Aminopeptidase, Leucyl,Aminopeptidase, Methoxyleucine,Aminopeptidase, Zinc-Manganese-Leucine,Zinc Manganese Leucine Aminopeptidase
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005700 Galactosyltransferases Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Galactosyltransferase
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

W H Evans, and T Kremmmer, and J G Culvenor
July 1987, Biochimica et biophysica acta,
W H Evans, and T Kremmmer, and J G Culvenor
May 1992, The Biochemical journal,
W H Evans, and T Kremmmer, and J G Culvenor
October 1971, The American journal of physiology,
W H Evans, and T Kremmmer, and J G Culvenor
January 2004, Annals of hepatology,
W H Evans, and T Kremmmer, and J G Culvenor
February 1983, The American journal of physiology,
W H Evans, and T Kremmmer, and J G Culvenor
January 1989, Biochimica et biophysica acta,
W H Evans, and T Kremmmer, and J G Culvenor
August 1975, The Journal of biological chemistry,
W H Evans, and T Kremmmer, and J G Culvenor
August 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Copied contents to your clipboard!