The purification and biological properties of pancreatic big glucagon. 1976

K J O'Connor, and N R Lazarus

1. Big glucagon was present in extracts of ox, dog, rat and turkey pancreas, representing 10-15% of the glucagon immunoreactivity, and was shown to be of islet origin by its presence in extracts of isolated pigeon islets. 2. Big glucagon was homogeneous by immunoassay after polyacrylamide-gel electrophoresis and was more electronegative than little glucagon. 3. Big glucagon was purified from bovine pancreas, and its apparent molecular weight was estimated by gel filtration as 8200+/-9%. 4. Limited tryptic proteolysis of the molecule produced an immunoreactive component slightly smaller than little glucagon. 5. Linear dilution curves were obtained with mammalian big glucagons by using both enteroglucagon cross-reacting and 'little-glucagon-carboxyl-end-specific' antisera. 6. The half-times for the disappearance of the immunoreactivity of big and little glucagon that had been injected into the rat circulation were 6.9 and 3.2min respectively. 7. Big glucagon was approximately one-sixth as effective as little glucagon in displacing radioactive little glucagon from its liver membrane receptor. 8. Big glucagon was equipotent on a molar basis with little glucagon in the stimulation of the mouse islet adenylate cyclase, an indicator of insulinogenic activity. 9. On a molar basis, big glucagon inhibited basal liver adenylate cyclase activity to the same extent that little glucagon stimulated the enzyme. 10. Big glucagon was without effect on blood glucose concentration in the rat in doses up to 5mug/kg. 11. Big glucagon was equipotent, on a molar basis, with little glucagon in stimulating lipolysis in isolated chicken fat-cells.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

K J O'Connor, and N R Lazarus
October 1974, Israel journal of medical sciences,
K J O'Connor, and N R Lazarus
April 1972, The Journal of biological chemistry,
K J O'Connor, and N R Lazarus
January 1970, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
K J O'Connor, and N R Lazarus
March 1987, Biokhimiia (Moscow, Russia),
K J O'Connor, and N R Lazarus
October 1956, The Journal of biological chemistry,
K J O'Connor, and N R Lazarus
October 1967, Journal of biochemistry,
K J O'Connor, and N R Lazarus
January 1968, Journal of biochemistry,
K J O'Connor, and N R Lazarus
September 1957, The Journal of biological chemistry,
K J O'Connor, and N R Lazarus
April 1966, Journal of biochemistry,
K J O'Connor, and N R Lazarus
April 1973, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!