Expression in Escherichia coli: purification and properties of the yeast general transcription factor TFIID. 1991

N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Faculté de Médecine, Strasbourg, France.

A T7 RNA polymerase expression system has been used for the efficient expression of the yeast RNA polymerase general transcription factor TFIID (TFIIDY), the TATA-box factor (previously called BTF1) in Escherichia coli. Expression of the gene was performed at 25 degrees C instead of 37 degrees C to increase the total amount of soluble TFIIDY. Soluble TFIIDY was purified in three chromatographic steps and was eluted from the final column, a heparin-5PW HPLC column, in two peaks at 0.38 M (peak I) and 0.42 M (peak II) KCl in which this protein was 52% and greater than 95% pure, respectively. The protein in both peaks was active in an in vitro transcription assay. However, while TFIIDY from peak II was essentially indistinguishable from the material isolated from yeast, the protein of peak I differed in a number of biochemical characteristics, having a lower specific activity in an in vitro transcription assay and displaying an altered pattern of bands in a DNA band shift assay. Despite these differences, the proteins in both peaks have identical molecular weights on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, have indistinguishable N-terminal amino acid sequences, and apparently exist as monomers under the conditions used for the heparin-5PW chromatography.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
October 1992, Protein expression and purification,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
October 1994, Protein expression and purification,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
November 2002, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
December 1972, Proceedings of the National Academy of Sciences of the United States of America,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
September 1994, Biochemical and biophysical research communications,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
April 2013, Biochimie,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
March 1997, Protein expression and purification,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
March 1968, The Journal of biological chemistry,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
January 2013, Nature,
N Burton, and B Cavallini, and M Kanno, and V Moncollin, and J M Egly
September 2004, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!