Alpha-adrenergic inhibition increases collateral circuit conductance in rats following acute occlusion of the femoral artery. 2008

Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
Department of Biomedical Sciences, E102 Vet. Medical Bldg, University of Missouri, Columbia, MO 65211, USA.

This study evaluated whether alpha-adrenergic activation contributes to collateral circuit vascular resistance in the hindlimb following acute unilateral occlusion of the femoral artery in rats. Blood pressures (BPs) were measured above (caudal artery) and below (distal femoral artery) the collateral circuit. Arterial BPs were reduced (15-35 mmHg) with individual (prazosin, rauwolscine) or combined (phentolamine) alpha-receptor inhibition. Blood flows (BFs) were measured using microspheres before and after alpha inhibition during the same treadmill speed. alpha(1) inhibition increased blood flow by approximately 40% to active muscles that were not affected by femoral occlusion, whereas collateral-dependent BFs to the calf muscles were reduced by 29 +/- 8.4% (P < 0.05), due to a decrease in muscle conductance with no change in collateral circuit conductance. alpha(2) inhibition decreased both collateral circuit (39 +/- 6.0%; P < 0.05) and calf muscle conductance (36 +/- 7.3%; P < 0.05), probably due to residual alpha(1) activation, since renal BF was markedly reduced with rauwolscine. Most importantly, inhibiting alpha(2) receptors in the presence of alpha(1) inhibition increased (43 +/- 12%; P < 0.05) collateral circuit conductance. Similarly, non-selective alpha inhibition with phentolamine increased collateral conductance (242 +/- 59%; P < 0.05). We interpret these findings to indicate that both alpha(1)- and alpha(2)-receptor activation can influence collateral circuit resistance in vivo during the high flow demands caused by exercise. Furthermore, we observed a reduced maximal conductances of active muscles that were ischaemic. Our findings imply that in the presence of excessive sympathetic activation, which can occur in the condition of intermittent claudication during exertion, an exaggerated vasoconstriction of the existing collateral circuit and active muscle will occur.

UI MeSH Term Description Entries
D008297 Male Males
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005263 Femoral Artery The main artery of the thigh, a continuation of the external iliac artery. Common Femoral Artery,Arteries, Common Femoral,Arteries, Femoral,Artery, Common Femoral,Artery, Femoral,Common Femoral Arteries,Femoral Arteries,Femoral Arteries, Common,Femoral Artery, Common
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions

Related Publications

Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
June 1997, Circulation research,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
October 2000, American journal of physiology. Heart and circulatory physiology,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
March 2008, The American journal of the medical sciences,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
January 2006, Journal of cardiovascular pharmacology,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
August 1968, Circulation research,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
December 2008, The Journal of physiology,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
April 2011, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
September 2005, Journal of the American College of Cardiology,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
July 1986, Vestnik khirurgii imeni I. I. Grekova,
Jessica C Taylor, and Zeyi Li, and H T Yang, and M Harold Laughlin, and Ronald L Terjung
January 1973, Angiologica,
Copied contents to your clipboard!