Physical determinants of left ventricular isovolumic pressure decline: model prediction with in vivo validation. 2008

Charles S Chung, and Sándor J Kovács
Washington Univ. Medical Center, St. Louis, MO 63110, USA.

The rapid decline in pressure during isovolumic relaxation (IVR) is traditionally fit algebraically via two empiric indexes: tau, the time constant of IVR, or tau(L), a logistic time constant. Although these indexes are used for in vivo diastolic function characterization of the same physiological process, their characterization of IVR in the pressure phase plane is strikingly different, and no smooth and continuous transformation between them exists. To avoid the parametric discontinuity between tau and tau(L) and more fully characterize isovolumic relaxation in mechanistic terms, we modeled ventricular IVR kinematically, employing a traditional, lumped relaxation (resistive) and a novel elastic parameter. The model predicts IVR pressure as a function of time as the solution of d(2)P/dt(2) + (1/micro)dP/dt + E(k)P = 0, where micro (ms) is a relaxation rate (resistance) similar to tau or tau(L) and E(k) (1/s(2)) is an elastic (stiffness) parameter (per unit mass). Validation involved analysis of 310 beats (10 consecutive beats for 31 subjects). This model fit the IVR data as well as or better than tau or tau(L) in all cases (average root mean squared error for dP/dt vs. t: 29 mmHg/s for model and 35 and 65 mmHg/s for tau and tau(L), respectively). The solution naturally encompasses tau and tau(L) as parametric limits, and good correlation between tau and 1/microE(k) (tau = 1.15/microE(k) - 11.85; r(2) = 0.96) indicates that isovolumic pressure decline is determined jointly by elastic (E(k)) and resistive (1/mu) parameters. We conclude that pressure decline during IVR is incompletely characterized by resistance (i.e., tau and tau(L)) alone but is determined jointly by elastic (E(k)) and resistive (1/micro) mechanisms.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D004548 Elasticity Resistance and recovery from distortion of shape.
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear

Related Publications

Charles S Chung, and Sándor J Kovács
July 1980, The American journal of physiology,
Charles S Chung, and Sándor J Kovács
November 1993, The American journal of physiology,
Charles S Chung, and Sándor J Kovács
January 1973, Cardiology,
Charles S Chung, and Sándor J Kovács
January 2002, Physiological research,
Charles S Chung, and Sándor J Kovács
January 1980, Journal of biomechanics,
Charles S Chung, and Sándor J Kovács
March 2003, The Canadian journal of cardiology,
Charles S Chung, and Sándor J Kovács
January 1995, The Japanese journal of physiology,
Copied contents to your clipboard!