The role of adenosine in dilator responses induced in arterioles and venules of rat skeletal muscle by systemic hypoxia. 1991

R Mian, and J M Marshall
Department of Physiology, Medical School, Birmingham.

1. In experiments on anaesthetized rats, we have studied the role of adenosine in mediating responses induced in individual arterioles and venules of the spinotrapezius muscle by systemic hypoxia. 2. During systemic hypoxia induced by breathing 6% O2 for 3 min, some arterioles and venules dilated while others constricted. Topical application of the adenosine receptor antagonist, 8 phenyl-theophylline (8-PT), to the spinotrapezius had no effect on the constrictor responses but greatly reduced the dilator responses. The vessels nearest to the capillary bed-terminal arterioles and collecting venules--were most affected; their mean changes in diameter were reduced from 39 and 8% to 11 and -1.6% respectively. 3. In accord with these results, topical application of adenosine (2 x 10(-7)-2 x 10(-3) M) produced graded dilation of all sections of the arterial and venous trees; the terminal arterioles and collecting venules were most responsive, being dilated at maximum by 31 and 15% respectively. The dilator responses induced in those vessels that constricted during hypoxia were fully comparable with those that dilated during hypoxia. 4. Histochemical analysis of the spinotrapezius revealed that oxidative fibres that most readily release adenosine, glycolytic and mixed fibres were all evenly distributed throughout the muscle. There is no reason to suppose that some vessels are preferentially influenced by oxidative fibres. 5. These results indicate that adenosine plays a major role in dilating both arterioles and venules of muscle during systemic hypoxia. But, they are consistent with the idea that the adenosine that is important is not released from muscle fibres, but synthesized by 5'-nucleotidase localized to the blood vessels; its activity may decrease proximally along the vascular tree and may vary from one vessel to another depending on the local O2 tension.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R Mian, and J M Marshall
May 1990, The American journal of physiology,
R Mian, and J M Marshall
September 2002, Clinical and experimental pharmacology & physiology,
R Mian, and J M Marshall
May 1995, The Journal of pharmacology and experimental therapeutics,
R Mian, and J M Marshall
July 1996, The American journal of physiology,
R Mian, and J M Marshall
September 1998, The American journal of physiology,
Copied contents to your clipboard!