Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. 1991

T Zeuthen
Panum Institute, University of Copenhagen, Denmark.

1. The interaction between Cl-, K+ and H2O fluxes were studied in the ventricular membrane of the choroid plexus epithelium from Necturus maculosus by means of ion-selective microelectrodes. The flux of H2O was measured by means of K+ electrodes as the dilution or concentration of intracellular choline ions, Ch+i. 2. In one series of experiments Cl- was readministered to the ventricular solution of tissues incubated in media with low Cl- concentrations. The resulting influx of Cl- was associated with an instantaneous influx of K+ and H2O. 3. Both the Cl- and the K+ influxes were reduced by the diuretic furosemide but were unaffected by inhibitors of Na+, K(+)-ATPase or changes in membrane potentials induced by Ba2+. Since the influx of K+ proceeds against its electrochemical gradient and is unaffected by changes in membrane potentials, the membrane exhibits secondary active, electroneutral transport of K+. 4. The influx of water, initiated simultaneously with the influx of K+ and Cl-, commenced before these ions had changed the osmolarity of the intracellular solution significantly. The influx of H2O could proceed against an osmotic gradient. The influx stopped when 100 mmol l-1 of mannitol was added to the ventricular solution at the same time as the Cl- ions. The influx of H2O was inhibited by K+ removal, furosemide or high external Ba2+ (10 mmol l-1), but not by strophanthidin, ouabain or low concentrations of Ba2+ (0.5 mmol l-1). The influx could not continue with other permeable anions, NO3-, acetate- or SCN-, replacing Cl-. 5. In another series of experiments Cl- was removed from the ventricular solution of tissues bathed in saline solutions with normal concentrations of Cl-. The resulting efflux of Cl- was associated with an instantaneous efflux of K+ and H2O. This efflux of H2O could proceed against an osmotic gradient of up to 70 mosmol l-1. This effect was inhibited by furosemide, in which case the water fluxes were entirely dependent on the osmotic gradients and the osmotic water permeability Lp of the ventricular membrane. 6. The data suggest that there is a coupling between the flux of KCl and of water in the ventricular membrane, which implies that the reflection coefficient sigma for KCl under the given circumstances is less than one. I suggest that the ability of leaky epithelia to transport against osmotic gradients depends on such a coupling, which derives from the properties of the proteins through which K+, Cl- and H2O leave the cell.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009338 Necturus maculosus A neotenic aquatic species of mudpuppy (Necturus) occurring from Manitoba to Louisiana and Texas.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

T Zeuthen
June 2017, American journal of physiology. Cell physiology,
T Zeuthen
February 1976, Journal of neurocytology,
T Zeuthen
August 1974, The Journal of physiology,
T Zeuthen
June 1999, The American journal of physiology,
T Zeuthen
January 2001, Microscopy research and technique,
T Zeuthen
November 1999, The Journal of biological chemistry,
T Zeuthen
July 1966, The Journal of comparative neurology,
T Zeuthen
January 2001, Microscopy research and technique,
T Zeuthen
November 1984, The American journal of physiology,
T Zeuthen
November 1988, The Journal of membrane biology,
Copied contents to your clipboard!