Cochlear NMDA receptor blockade prevents salicylate-induced tinnitus. 2007

J L Puel
Université Montpellier I and Inserm U 583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, CHU Saint Eloi, Montpellier, France. puel@montp.inserm.fr

Large doses of aspirin produce reversible hearing loss and tinnitus. These effects have been attributed to the salicylate ion, the active component of aspirin. Salicylate acts as a competitive antagonist at the anion-binding site of prestin, the motor protein of sensory outer hair cells. This provides an explanation for the hearing loss induced by aspirin. However, the molecular mechanism of salicylate-induced tinnitus remains obscure. One physiological explanation is that salicylate ototoxicity is likely to originate in an alteration to arachidonic acid metabolism. Arachidonic acid potentiates NMDA receptor currents. We therefore tested the involvement of cochlear NMDA receptors in the occurrence of tinnitus. Tinnitus was assessed with a behavioural test based on an active avoidance paradigm. Results showed that the tinnitus induced by salicylate may be suppressed by the introduction of NMDA antagonists into the cochlear fluids. To determine if the activation of NMDA receptors was linked to cyclooxygenase inhibition, we investigated the effect of mefenamate (a potent cyclooxygenase inhibitor). Since NMDA antagonists also blocked mefenamate-induced tinnitus, we suggest that salicylate-induced tinnitus is mediated by cochlear NMDA receptors through the inhibition of cyclooxygenase activity. Target cochlear NMDA receptors may therefore present a therapeutic strategy for the treatment of tinnitus.

UI MeSH Term Description Entries
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012459 Salicylates The salts or esters of salicylic acids, or salicylate esters of an organic acid. Some of these have analgesic, antipyretic, and anti-inflammatory activities by inhibiting prostaglandin synthesis. Salicylate,Salicylic Acids,Acids, Salicylic
D014012 Tinnitus A nonspecific symptom of hearing disorder characterized by the sensation of buzzing, ringing, clicking, pulsations, and other noises in the ear. Objective tinnitus refers to noises generated from within the ear or adjacent structures that can be heard by other individuals. The term subjective tinnitus is used when the sound is audible only to the affected individual. Tinnitus may occur as a manifestation of COCHLEAR DISEASES; VESTIBULOCOCHLEAR NERVE DISEASES; INTRACRANIAL HYPERTENSION; CRANIOCEREBRAL TRAUMA; and other conditions. Pulsatile Tinnitus,Ringing-Buzzing-Tinnitus,Spontaneous Oto-Acoustic Emission Tinnitus,Tensor Palatini Induced Tinnitus,Tensor Tympani Induced Tinnitus,Tinnitus of Vascular Origin,Tinnitus, Clicking,Tinnitus, Leudet,Tinnitus, Leudet's,Tinnitus, Noise Induced,Tinnitus, Objective,Tinnitus, Spontaneous Oto-Acoustic Emission,Tinnitus, Subjective,Tinnitus, Tensor Palatini Induced,Tinnitus, Tensor Tympani Induced,Vascular Origin Tinnitus,Clicking Tinnitus,Induced Tinnitus, Noise,Leudet Tinnitus,Leudet's Tinnitus,Noise Induced Tinnitus,Objective Tinnitus,Ringing Buzzing Tinnitus,Spontaneous Oto Acoustic Emission Tinnitus,Subjective Tinnitus,Tinnitus, Leudets,Tinnitus, Pulsatile,Tinnitus, Spontaneous Oto Acoustic Emission,Tinnitus, Vascular Origin
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin
D018691 Excitatory Amino Acid Antagonists Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists. Amino Acids, Excitatory, Antagonists,Excitatory Amino Acid Antagonist,Glutamate Antagonist,Glutamate Antagonists,Glutamate Receptor Antagonist,Amino Acid Antagonists, Excitatory,Antagonists, Excitatory Amino Acid,EAA Antagonists,Glutamate Receptor Antagonists,Antagonist, Glutamate,Antagonist, Glutamate Receptor,Antagonists, EAA,Antagonists, Glutamate,Antagonists, Glutamate Receptor,Receptor Antagonist, Glutamate,Receptor Antagonists, Glutamate

Related Publications

J L Puel
January 2015, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Copied contents to your clipboard!