Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. 2008

Ling Gao, and Karine Laude, and Hua Cai
Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. lcai@mednet.ucla.edu

This article discusses mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Mitochondrial respiratory chains are responsible for energy metabolism/ATP production through the tricyclic antidepressant cycle, coupling of oxidative phosphorylation, and electron transfer. The mitochondrion produces reactive oxygen species as "side products" of respiration. The mitochondrial derived reactive oxygen species is involved in the pathogenesis of various clinical disorders including heart failure, hypoxia, ischemia/reperfusion injury, diabetes, neurodegenerative diseases, and the physiologic process of aging. Observational and mechanistical studies of these pathologic roles of mitochondria are discussed in depth in this article.

UI MeSH Term Description Entries
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D002318 Cardiovascular Diseases Pathological conditions involving the CARDIOVASCULAR SYSTEM including the HEART; the BLOOD VESSELS; or the PERICARDIUM. Adverse Cardiac Event,Cardiac Events,Major Adverse Cardiac Events,Adverse Cardiac Events,Cardiac Event,Cardiac Event, Adverse,Cardiac Events, Adverse,Cardiovascular Disease,Disease, Cardiovascular,Event, Cardiac
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D028361 Mitochondrial Diseases Diseases caused by abnormal function of the MITOCHONDRIA. They may be caused by mutations, acquired or inherited, in mitochondrial DNA or in nuclear genes that code for mitochondrial components. They may also be the result of acquired mitochondria dysfunction due to adverse effects of drugs, infections, or other environmental causes. Electron Transport Chain Deficiencies, Mitochondrial,Mitochondria Dysfunction,Mitochondrial Defect,Mitochondrial Dysfunction,Oxidative Phosphorylation Deficiencies,Respiratory Chain Deficiencies, Mitochondrial,Mitochondrial Disorders,Mitochondrial Electron Transport Chain Deficiencies,Mitochondrial Respiratory Chain Deficiencies,Defect, Mitochondrial,Deficiency, Oxidative Phosphorylation,Disease, Mitochondrial,Disorder, Mitochondrial,Dysfunction, Mitochondria,Dysfunction, Mitochondrial,Mitochondria Dysfunctions,Mitochondrial Defects,Mitochondrial Disease,Mitochondrial Disorder,Mitochondrial Dysfunctions,Oxidative Phosphorylation Deficiency,Phosphorylation Deficiency, Oxidative

Related Publications

Ling Gao, and Karine Laude, and Hua Cai
December 2001, Seminars in cell & developmental biology,
Ling Gao, and Karine Laude, and Hua Cai
January 2018, Antioxidants (Basel, Switzerland),
Ling Gao, and Karine Laude, and Hua Cai
May 2023, Cardiovascular research,
Ling Gao, and Karine Laude, and Hua Cai
October 2018, Antioxidants & redox signaling,
Ling Gao, and Karine Laude, and Hua Cai
January 2015, Oxidative medicine and cellular longevity,
Ling Gao, and Karine Laude, and Hua Cai
April 2016, Nihon rinsho. Japanese journal of clinical medicine,
Ling Gao, and Karine Laude, and Hua Cai
August 2009, Journal of the Formosan Medical Association = Taiwan yi zhi,
Ling Gao, and Karine Laude, and Hua Cai
November 2015, International journal of molecular sciences,
Ling Gao, and Karine Laude, and Hua Cai
April 2002, Methods (San Diego, Calif.),
Copied contents to your clipboard!