Synergism of glucocorticoid hormone with growth hormone for female-specific mouse Cyp3a44 gene expression. 2008

Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
Department of Toxicology, Graduate School of Medicine and Pharmaceutical, Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 Japan.

CYP3A44 and CYP3A41 are female-specific CYP3A in the mouse liver. In primary cultured mouse hepatocytes, dexamethasone concentration-dependently induced CYP3A44 mRNA, and the highest response was seen at 10(-5) M. In contrast, CYP3A41 mRNA expression was highest at lower concentrations (10(-7) or 10(-6) M). At submicromolar concentration (10(-7) M), the induction of CYP3A44 mRNA was very slight, but strongly enhanced induction was observed by the simultaneous addition of growth hormone (GH). Similar enhancement was also observed in CYP3A41 mRNA expression. Continuous exposure to GH, which mimics female-type secretion from the pituitary gland, was effective to enhance the expression of both mRNAs, but discontinuous exposure (male-type) was not. This synergistic induction of CYP3A44 mRNA was further enhanced by the transfection of glucocorticoid receptor (GR) expression plasmid or by the cotransfection of pregnane X receptor (PXR) and retinoid X receptor (RXR) alpha expression plasmids. Similar synergistic induction was seen in CYP3A41 mRNA by the transfection of GR expression plasmid but was not enhanced by cotransfection of PXR and RXR expression plasmids. These observations suggest that functional cross-talk between signaling pathways of female-type GH secretion and glucocorticoid hormone might be involved in the female-predominant expression of both genes. Additionally, one or more nuclear receptors mediating induction by glucocorticoid hormone are employed for collaboration with GH.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females

Related Publications

Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
October 2004, Biochemical and biophysical research communications,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
February 2004, Biochemical and biophysical research communications,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
February 1997, The Journal of endocrinology,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
August 2002, Archives of biochemistry and biophysics,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
September 2001, Molecular therapy : the journal of the American Society of Gene Therapy,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
August 1999, Journal of molecular endocrinology,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
October 1977, Proceedings of the National Academy of Sciences of the United States of America,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
July 1993, FEBS letters,
Tsutomu Sakuma, and Wattanaporn Bhadhprasit, and Tadahiro Hashita, and Nobuo Nemoto
May 2018, Scientific reports,
Copied contents to your clipboard!