The protein-tyrosine kinase substrate, calpactin I heavy chain (p36), is part of the primer recognition protein complex that interacts with DNA polymerase alpha. 1991

H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
Department of Biochemistry, University of Nebraska Medical Center, Omaha 68198.

Primer recognition proteins (PRP) stimulate the activity of DNA polymerase alpha on DNA substrates with long single-stranded template containing few primers. Purified PRP from HeLa cells and human placenta are composed of two subunits of 36,000 (PRP 1) and 41,000 (PRP 2) daltons. By amino acid sequence homology, we have identified PRP 2 as the glycolytic enzyme 3-phosphoglycerate kinase. Here we present data that establishes PRP 1 to be the protein-tyrosine kinase substrate, calpactin I heavy chain. Amino acid sequence analysis of six tryptic peptides of PRP 1 followed by homology search in a protein sequence data base revealed 100% identity of all six peptides with the deduced amino acid sequence of human calpactin I heavy chain. The activities of PRP and calpactin I coelute on gel filtration columns, and a high correlation of PRP and calpactin I activities was seen at different stages of purification. A rabbit polyclonal anti-chicken calpactin I antibody was shown to cross-react with PRP 1 polypeptide at various stages of PRP purification, and the homogeneous preparation of PRP exhibits 3-phosphoglycerate kinase (PRP 2) and calpactin I (PRP 1) activities. PRP activity is neutralized by a mouse monoclonal anti-calpactin II antibody although having no effect on the polymerase alpha activity itself. Calpactin II has a 50% amino acid sequence homology with calpactin I. However, PRP 1 is not calpactin II as shown by lack of cross-reaction to a monoclonal anti-calpactin II antibody on Western blots. Calpactin I and 3-phosphoglycerate kinase, purified independently, cannot be efficiently reconstituted into the PRP complex, indicating that their association in the PRP complex involves specific protein-protein interactions that remain to be elucidated. The biochemical and immunological data presented here revealing the identity of PRP 1 as calpactin I provide evidence for one physiological role of calpactin I in the cell.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
January 1989, Journal of molecular neuroscience : MN,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
July 1986, Cell,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
February 1990, Biochemistry,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
August 1990, The Journal of biological chemistry,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
August 1987, The Journal of biological chemistry,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
July 1986, Molecular and cellular biology,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
February 1991, Journal of neurochemistry,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
October 2002, Biochemistry,
H K Jindal, and W G Chaney, and C W Anderson, and R G Davis, and J K Vishwanatha
June 2001, Journal of cell science,
Copied contents to your clipboard!