Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution. 2008

Matheus T de Groot, and Marc T M Koper
Laboratory of Inorganic Chemistry and Catalysis, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600, MB Eindhoven, The Netherlands.

The electrochemical redox behavior of immobilized chromium, manganese, iron, cobalt, and nickel protoporphyrins IX has been investigated over the pH 0-14 range. In the investigated potential domain the metalloporphyrins were observed in four different oxidation states (M(I), M(II), M(III) and M(IV)). The metalloporphyrins differ in the potentials at which the redox transitions occur, but the observed pH dependence of the redox transitions was similar for the different metalloporphyrins and revealed that the M(II)/M(III) and M(III)/M(IV) transitions were accompanied by a hydroxide transfer at high pH. The fact that the metalloporphyrins are immobilized on graphite does not seem to have a large influence on their redox behavior, as can be deduced from the comparable behavior of immobilized metalloporphyrins on gold and of watersoluble metalloporphyrins in solution. We also performed density functional theory (DFT) calculations on the metalloporphyrins in different oxidation states. The geometries and spin states predicted by these calculations agree well with experimentally determined values; the calculations were also able to predict the electrochemical potentials of the [M(II)]/[M(III)-OH] redox transition to within about 300 mV.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008665 Metalloporphyrins Porphyrins which are combined with a metal ion. The metal is bound equally to all four nitrogen atoms of the pyrrole rings. They possess characteristic absorption spectra which can be utilized for identification or quantitative estimation of porphyrins and porphyrin-bound compounds. Metalloporphyrin
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011524 Protoporphyrins Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
D002857 Chromium A trace element that plays a role in glucose metabolism. It has the atomic symbol Cr, atomic number 24, and atomic weight 52. According to the Fourth Annual Report on Carcinogens (NTP85-002,1985), chromium and some of its compounds have been listed as known carcinogens.
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer

Related Publications

Matheus T de Groot, and Marc T M Koper
February 2003, Water research,
Matheus T de Groot, and Marc T M Koper
December 2006, Journal of computational chemistry,
Matheus T de Groot, and Marc T M Koper
May 1988, Physical review. B, Condensed matter,
Matheus T de Groot, and Marc T M Koper
March 2010, Organic letters,
Matheus T de Groot, and Marc T M Koper
November 1989, The Journal of prosthetic dentistry,
Matheus T de Groot, and Marc T M Koper
April 2005, Journal of the American Chemical Society,
Matheus T de Groot, and Marc T M Koper
January 1985, Voprosy pitaniia,
Matheus T de Groot, and Marc T M Koper
November 1967, Environmental science & technology,
Copied contents to your clipboard!