Murine Th1 and Th2 clones proliferate optimally in response to distinct antigen-presenting cell populations. 1991

T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
Department of Pathology, University of Chicago, IL 60637.

We recently have devised a method for the derivation of OVA-specific Th1 and Th2 clones from the same primed lymph node cell preparation. Using a panel of such cells, we have examined the ability of distinct APC populations to stimulate proliferation of Th1 and Th2 clones. Both subsets proliferated well in response to OVA in the presence of whole spleen cells. However, purified B cells stimulated optimal proliferation of Th2 clones, whereas adherent cells stimulated optimal proliferation of Th1 clones. The proliferative response of Th2 cells stimulated with spleen cells irradiated with 3300 rad was dramatically less than that observed in response to spleen cells treated with 1000 rad; Th1 clones responded similarly to spleen cells exposed to either irradiation dose. Differential activation of Th1 and Th2 clones did not correlate with MHC-restricting element, or susceptibility to inhibition by mAb directed against CD4 or LFA-1. Lymphokine production by each subset still occurred under conditions of suboptimal proliferation, suggesting that the appropriate Ag processing and presentation events had transpired. The same pattern of response was observed using a specific OVA peptide that does not require processing, suggesting that differential responsiveness of Th1 and Th2 clones to different APC populations is not a result of defective Ag processing. Neither rIL-1 nor rIL-6 restored optimal proliferation of either subset. Our results suggest that unique cofactors are necessary for the optimal proliferation of Th1 and Th2 clones, and that these cofactors are produced by specialized APC populations.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010047 Ovalbumin An albumin obtained from the white of eggs. It is a member of the serpin superfamily. Serpin B14
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005260 Female Females
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
January 1991, Research in immunology,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
July 1995, Journal of leukocyte biology,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
March 1998, Proceedings of the National Academy of Sciences of the United States of America,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
March 1990, Journal of immunology (Baltimore, Md. : 1950),
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
July 1990, Journal of immunology (Baltimore, Md. : 1950),
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
April 2000, Immunobiology,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
May 2006, Current protocols in immunology,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
March 2017, Parasite immunology,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
March 1990, Cytokine,
T F Gajewski, and M Pinnas, and T Wong, and F W Fitch
January 1991, European journal of immunology,
Copied contents to your clipboard!