Incorporation of 75Se-selenomethionine into human apoproteins. III. Kinetic behavior of isotopically labeled plasma apoprotein in man. 1976

R P Eaton, and S Crespin, and D M Kipnis

The metabolism of lipoprotein-apoprotein was examined in four subjects with normal lipid metabolism and in one subject with type II hyperlipemia by means of isotopic tracer methodology. Studies were performed after intravenous injection of a radioactive amino acid precursor for apoprotein synthesis (75Se-selenomethionine), in both the basal state and following the acute injection of intravenous heparin. Computer technics were used to evaluate a series of multicompartmental models, and a general model is proposed that yields optimum fitting of experimental data for serum free amino acid precursor, very-low-density lipoprotein-apoprotein (VLD-apoprotein), and low-density lipoprotein-apoprotein (LDL-apoprotein) in man. The analysis demonstrates that approximately half of the transport of 75Se-apoVLDL from the plasma VLDL pool is converted to 75Se-apoLDL. The acute injection of heparin in two normal subjects results in a two-and-a-half-fold increase in this rate of conversion of 75Se-apoVLDL to 75Se-apoLDL. 75Se-apoLDL is metabolized by rapid transport into a recycling extravascular pool and by irreversible catabolism. The fractional rate of recycling is large relative to the fractional rate of catabolism of apoLDL (3.7:1.0), suggesting extravascular recycling as a potential site of regulation of the plasma concentration of apoLDL. In a patient with type II hyperlipemia, the extravascular recycling pathway is reduced and is not corrected with D-thyroxine therapy. However, this therapy did reduce conversion of apoVLDL to apoLDL in this type II patient. The kinetic data support the validity of the compartmental model in simulating both normal and pathologic apoprotein metabolism and that perturbation of physiology seen with heparin injection and D-thyroxine therapy. These data support a quantitative role of apoVLDL as a precursor of apoLDL and identify an important recycling pathway of apoLDL metabolism in addition to that of catabolism.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008297 Male Males
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

R P Eaton, and S Crespin, and D M Kipnis
February 1968, The Journal of nutrition,
R P Eaton, and S Crespin, and D M Kipnis
July 1966, Metabolism: clinical and experimental,
R P Eaton, and S Crespin, and D M Kipnis
July 1991, Journal of lipid research,
R P Eaton, and S Crespin, and D M Kipnis
January 1998, Journal of analytical toxicology,
R P Eaton, and S Crespin, and D M Kipnis
April 1975, Metabolism: clinical and experimental,
R P Eaton, and S Crespin, and D M Kipnis
January 1987, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
R P Eaton, and S Crespin, and D M Kipnis
April 1968, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
R P Eaton, and S Crespin, and D M Kipnis
November 1969, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Copied contents to your clipboard!