Lesions of the hypothalamus and pituitary inhibit volume-expansion-induced release of atrial natriuretic peptide. 1991

J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
Department of Physiology, School of Medicine, Preto, S.P. Brazil.

Expansion of the blood volume causes a release of atrial natriuretic peptide (ANP) that is believed to be important in induction of the subsequent natriuresis and diuresis which, in turn, acts to reduce the increase in blood volume. Since stimulation of the anteroventral portion of the third cerebral ventricle (AV3V) induced a rapid elevation of plasma ANP, whereas lesions of the AV3V were followed by a marked decline in plasma concentration of the peptide, we hypothesized that release of ANP from the brain ANP neuronal system might be important to the control of plasma ANP. The perikarya of the ANP-containing neurons are densely distributed in the AV3V and their axons project to the median eminence and neural lobe. To test the hypothesis that these neurons are involved in volume-expansion-induced ANP release, by using electrolysis we destroyed the AV3V, the site of the perikarya, in male rats. Other lesions were made in the median eminence and posterior pituitary, sites of termination of the axons of these neurons, and also hypophysectomy was performed in other animals. In conscious freely moving animals, volume expansion and stimulation of postulated sodium receptors in the hypothalamus were induced by injection of hypertonic NaCl solution [0.5 or 0.3 M NaCl; 2 ml/100 g (body weight)]. Volume expansion alone was induced with the same volume of an isotonic solution (NaCl or glucose). In the sham-operated rats, volume expansion with hypertonic or isotonic solutions caused equivalent rapid increases in plasma ANP that peaked at 5 min and returned nearly to control values by 15 min. Lesions caused a decrease in the initial levels of plasma ANP on comparison with values from the sham-operated rats, and each type of lesion induced a highly significant suppression of the response to volume expansion on testing 1-5 days after lesions were made. Because a common denominator of the lesions was elimination of the brain ANP neuronal system, these results suggest that the brain ANP plays an important role in the mediation of the release of ANP that occurs after volume expansion. Since the content of ANP in this system is much less than that in the atria, there must be a remarkable increase in synthesis and release of brain ANP associated with this stimulus. It is also possible that blockade of volume-expansion-induced release of other neurohypophyseal hormones, such as endothelin, may block release of ANP from atrial myocytes. It is probable that volume expansion detected by stretch of atrial and carotid-aortic baroreceptors causes afferent input to the brain ANP system, thereby causing increased release of the peptide from the median eminence and neural lobe. Our results emphasize the importance of brain ANP to the control of ANP release to the blood.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013238 Stereotaxic Techniques Techniques used mostly during brain surgery which use a system of three-dimensional coordinates to locate the site to be operated on. Stereotactic Techniques,Stereotaxic Technics,Stereotactic Technique,Stereotaxic Technic,Stereotaxic Technique,Technic, Stereotaxic,Technics, Stereotaxic,Technique, Stereotactic,Technique, Stereotaxic,Techniques, Stereotactic,Techniques, Stereotaxic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
January 1990, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
December 1993, Neuroendocrinology,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
January 1988, Clinical and experimental hypertension. Part A, Theory and practice,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
April 1986, The Journal of endocrinology,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
January 1992, American journal of nephrology,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
January 1995, Acta physiologica et pharmacologica Bulgarica,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
January 1987, Peptides,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
August 1986, The American journal of physiology,
J Antunes-Rodrigues, and M J Ramalho, and L C Reis, and J V Menani, and M Q Turrin, and J Gutkowska, and S M McCann
January 1997, Neuroendocrinology,
Copied contents to your clipboard!