| D008540 |
Meiosis |
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. |
M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M |
|
| D008938 |
Mitosis |
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. |
M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M |
|
| D009865 |
Oocytes |
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). |
Ovocytes,Oocyte,Ovocyte |
|
| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D003513 |
Cycloheximide |
Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. |
Actidione,Cicloheximide |
|
| D004789 |
Enzyme Activation |
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. |
Activation, Enzyme,Activations, Enzyme,Enzyme Activations |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D014176 |
Protein Biosynthesis |
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. |
Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations |
|
| D014982 |
Xenopus laevis |
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. |
Platanna,X. laevis,Platannas,X. laevi |
|
| D016200 |
Maturation-Promoting Factor |
Protein kinase that drives both the mitotic and meiotic cycles in all eukaryotic organisms. In meiosis it induces immature oocytes to undergo meiotic maturation. In mitosis it has a role in the G2/M phase transition. Once activated by CYCLINS; MPF directly phosphorylates some of the proteins involved in nuclear envelope breakdown, chromosome condensation, spindle assembly, and the degradation of cyclins. The catalytic subunit of MPF is PROTEIN P34CDC2. |
Histone H1 Kinase, M-Phase-Specific,M Phase-Promoting Factor,Mitosis-Promoting Factor,Histone H1 Kinase, Growth-Associated,Histone H1 Kinase, Growth Associated,Histone H1 Kinase, M Phase Specific,M Phase Promoting Factor,Maturation Promoting Factor,Mitosis Promoting Factor |
|