Cytokine production by T helper cell subpopulations during prolonged in vitro stimulation. 1991

A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.

In man, CD4+ T cells can be divided into phenotypically distinguishable subsets with different function whereas CD4+ T cells with the opposite pheno-CD45RO and low levels of CD45RA antigen provide help for mitogen-induced immunoglobulin production whereas CD4+ cells with the opposite phenotype suppress immunoglobulin production. However, studies examining cytokine production by phenotypically defined CD4+ T cell subsets have led to different conclusions. Further, very few studies have examined cytokine production by freshly isolated CD4+ T cell subsets during extended culture periods. Thus, we examined the production of several cytokines (at various time points) by CD4+ T cell subsets that were isolated in several ways, and stimulated with PWM, Con A, and PHA in a well-defined serum-free culture system. We found that CD4+, CD45RA- (or CD45RO+) T cells consistently produced the most IL-2, IFN-gamma, and TNF-alpha after mitogen stimulation for 2 days. PWM induced the largest quantities of each cytokine, although a similar pattern of production was observed in response to Con A and PHA. We were unable to detect IL-4 production by mononuclear cells and CD4+ T cell subsets suggesting that, if it is produced at all, IL-4 is produced in extremely small quantities. When the culture period of initially CD45RO- T cells was extended beyond 2 days, the culture supernatant contained increased quantities of each cytokine and the cells in the culture had an increased number of cells expressing CD45RO antigen. Together, these data indicate that CD4, CD45RA- (or CD45RO+) T cells in peripheral blood are the major producers of IL-2, IFN-gamma, and TNF-alpha following short-term mitogen stimulation, and that phenotypically defined peripheral blood T cell subsets do not maintain a distinct pattern of cytokines during extended culture periods.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D016130 Immunophenotyping Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry. Lymphocyte Immunophenotyping,Lymphocyte Subtyping,Immunologic Subtyping,Immunologic Subtypings,Lymphocyte Phenotyping,Subtyping, Immunologic,Subtypings, Immunologic,Immunophenotyping, Lymphocyte,Immunophenotypings,Immunophenotypings, Lymphocyte,Lymphocyte Immunophenotypings,Lymphocyte Phenotypings,Lymphocyte Subtypings,Phenotyping, Lymphocyte,Phenotypings, Lymphocyte,Subtyping, Lymphocyte,Subtypings, Lymphocyte
D016176 T-Lymphocyte Subsets A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells. T-Cell Subset,T-Cell Subsets,T-Lymphocyte Subset,Subset, T-Cell,Subset, T-Lymphocyte,Subsets, T-Cell,Subsets, T-Lymphocyte,T Cell Subset,T Cell Subsets,T Lymphocyte Subset,T Lymphocyte Subsets
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
January 1997, Pathobiology : journal of immunopathology, molecular and cellular biology,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
October 1991, Immunological reviews,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
January 2022, Frontiers in immunology,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
May 2012, Veterinary parasitology,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
April 1996, Scandinavian journal of immunology,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
January 2015, Journal of immunology research,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
January 2013, PloS one,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
August 1996, The Journal of experimental medicine,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
January 1998, Neuroimmunomodulation,
A W Butch, and J Pesando, and A D Levine, and J P McKearn, and M H Nahm
August 2001, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology,
Copied contents to your clipboard!