Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. 1991

S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892.

To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions.

UI MeSH Term Description Entries
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D007737 Kynurenine A metabolite of the essential amino acid tryptophan metabolized via the tryptophan-kynurenine pathway.
D008297 Male Males
D011805 Quinolinic Acids Dicarboxylic acids with a PYRIDINE backbone. Quinolinic Acids are downstream products of the KYNURENINE pathway which metabolize amino acid TRYPTOPHAN. Acids, Quinolinic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D017378 Quinolinic Acid A metabolite of tryptophan with a possible role in neurodegenerative disorders. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Quinolinate,Quinolinic Acid, Copper(2+) Salt,Quinolinic Acid, Disodium Salt,Quinolinic Acid, Strontium Salt

Related Publications

S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
January 2011, Frontiers in pharmacology,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
January 1994, The Journal of pharmacology and experimental therapeutics,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
May 1998, Neurochemical research,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
February 1993, Biochemical Society transactions,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
September 1992, Brain research,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
April 2010, Journal of agricultural and food chemistry,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
November 2008, Therapeutic advances in neurological disorders,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
May 2001, The Journal of clinical endocrinology and metabolism,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
July 1993, Physiological reviews,
S Fukui, and R Schwarcz, and S I Rapoport, and Y Takada, and Q R Smith
March 2002, Brain research,
Copied contents to your clipboard!