Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. 2008

Anthony P Moran
Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland. anthony.moran@nuigalway.ie

Helicobacter pylori is a prevalent bacterial, gastroduodenal pathogen of humans that can express Lewis (Le) and related antigens in the O-chains of its surface lipopolysaccharide. The O-chains of H. pylori are commonly composed of internal Le(x) units with terminal Le(x) or Le(y) units or, in some strains, with additional units of Le(a), Le(b), Le(c), sialyl-Le(x) and H-1 antigens, as well as blood groups A and B, thereby producing a mosaicism of antigenic units expressed. The genetic determination of the Le antigen biosynthetic pathways in H. pylori has been studied, and despite striking functional similarity, low sequence homology occurs between the bacterial and mammalian alpha(1,3/4)- and alpha(1,2)-fucosyltransferases. Factors affecting Le antigen expression in H. pylori, that can influence the biological impact of this molecular mimicry, include regulation of fucosyltransferase genes through slipped-strand mispairing, the activity and expression levels of the functional enzymes, the preferences of the expressed enzyme for distinctive acceptor molecules and the availability of activated sugar intermediates. Le mimicry was initially implicated in immune evasion and gastric adaptation by the bacterium, but more recent studies show a role in gastric colonization and bacterial adhesion with galectin-3 identified as the gastric receptor for polymeric Le(x) on the bacterium. From the host defence aspect, innate immune recognition of H. pylori by surfactant protein D is influenced by the extent of LPS fucosylation. Furthermore, Le antigen expression affects both the inflammatory response and T-cell polarization that develops after infection. Although controversial, evidence suggests that long-term H. pylori infection can induce autoreactive anti-Le antibodies cross-reacting with the gastric mucosa, in part leading to the development of gastric atrophy. Thus, Le antigen expression and fucosylation in H. pylori have multiple biological effects on pathogenesis and disease outcome.

UI MeSH Term Description Entries
D007983 Lewis Blood Group Antigens Carbohydrate antigens structurally related to the ABH BLOOD-GROUP SYSTEM. They may occur as a modification of saccharide chains on glycolipids or glycoproteins on cell surfaces or in plasma, or as free oligosaccharides in secretions. Lewis antigens are not synthesized in blood cells. Instead Lewis glycolipids present in plasma are absorbed onto the surface of ERYTHROCYTES; LYMPHOCYTES; and PLATELETS. The phenotypes Le(a) and Le(b) are the result of the actions of two genes the Le gene (fucosyltransferase FUT3) and the Se gene (fucosyltransferase FUT2) on the precursor carbohydrate, glycolipid or glycoprotein. Other FUCOSYLTRANSFERASES can also synthesize the Lewis antigens. Blood Group Lewis Related Antigens,Lewis Antigen Related Tumor-Associated Antigens,Lewis Antigens,Lewis Blood Group Related Antigens,Lewis Blood Group Related Tumor-Associated Antigens,Lewis Blood-Group System,Lewis Related Antigens,Lewis System,Sialyl Lewis Antigens,Le Antigens,Le(a) Blood Group System,Antigens, Lewis,Antigens, Lewis Related,Antigens, Sialyl Lewis,Blood-Group System, Lewis,Lewis Antigen Related Tumor Associated Antigens,Lewis Blood Group Related Tumor Associated Antigens,Lewis Blood Group System
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D005647 Fucosyltransferases Enzymes catalyzing the transfer of fucose from a nucleoside diphosphate fucose to an acceptor molecule which is frequently another carbohydrate, a glycoprotein, or a glycolipid molecule. Elevated activity of some fucosyltransferases in human serum may serve as an indicator of malignancy. The class includes EC 2.4.1.65; EC 2.4.1.68; EC 2.4.1.69; EC 2.4.1.89. Fucosyltransferase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs
D016256 Lewis X Antigen A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, Lewis X antigen is a stage-specific embryonic antigen. Antigens, CD15,CD15 Antigens,Le(X) Antigen,Leu-M1 Antigens,Lewis X Related Antigens,SSEA-1,SSEA-1 Determinant,Stage-Specific Embryonic Antigen-1,3 alpha-Fucosyl-N-Acetyl Lactosamine,CD15 Antigen,Galbeta(1-4)Fucalpha(1-3)GlcNAc,Hapten X,Lewis X Hapten,SSEA 1,3 alpha Fucosyl N Acetyl Lactosamine,Antigen, Lewis X,Embryonic Antigen-1, Stage-Specific,Leu M1 Antigens,SSEA 1 Determinant,Stage Specific Embryonic Antigen 1,X Antigen, Lewis,X Hapten, Lewis
D016480 Helicobacter pylori A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405). Campylobacter pylori,Campylobacter pylori subsp. pylori,Campylobacter pyloridis,Helicobacter nemestrinae
D016481 Helicobacter Infections Infections with organisms of the genus HELICOBACTER, particularly, in humans, HELICOBACTER PYLORI. The clinical manifestations are focused in the stomach, usually the gastric mucosa and antrum, and the upper duodenum. This infection plays a major role in the pathogenesis of type B gastritis and peptic ulcer disease. Infections, Helicobacter,Helicobacter Infection,Infection, Helicobacter

Related Publications

Anthony P Moran
August 2001, The Journal of infectious diseases,
Anthony P Moran
July 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Anthony P Moran
January 2004, Journal of pediatric gastroenterology and nutrition,
Copied contents to your clipboard!