3'-end formation at the phage lambda tR1 rho-dependent transcription termination site. 1991

E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
Department of Cell Biology, University of New Mexico School of Medicine, Albuquerque 87131.

The rho-dependent transcription terminator tR1 of bacteriophage lambda stops RNA synthesis downstream of the major rightward promoter, PR, shortly after the cro gene. Terminated transcripts produced in a purified in vitro transcription system display a heterodisperse set of 3' termini, occurring in clusters located at +290-300, 308-312, 340-345, 385-390, and 440-450 nucleotides from the transcription start site [Morgan, W.D., Bear, D.G., & von Hippel, P.H. (1983) J. Biol. Chem. 258, 9553-9564]. However, transcripts from the same promoter in vivo have been reported to end primarily at +310-312 [Court, D., Brady, C., Rosenberg, M., Wulff, D. L., Behr, M., Mahoney, M., & Izumi, S. (1980) J. Mol. Biol. 138, 231-254]. In order to understand the nature of this discrepancy, we have carried out a comparative analysis of lambda PR transcription products produced in translationally active S30 cell extracts, in a purified in vitro system and in vivo. RNAs from the cell extracts coupled to translation show primarily three PR-derived transcripts beginning at one predominant 5' end and terminating at +263, 308, and 318. Sites +263 and +308 appear to be RNA processing sites. S1 nuclease mapping studies of RNAs produced in vivo show one 5' end and two 3' termini ending at +263 and 311; the +263 site is the predominant 3' end. When transcripts produced in a purified in vitro transcription system are incubated in the S30 cell extract under various conditions, the RNAs are degraded to two primary products with lengths of 263 and 308-311 nt.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011117 Polyribonucleotide Nucleotidyltransferase An enzyme of the transferase class that catalyzes the reaction RNA(n+1) and orthophosphate to yield RNA(n) and a nucleoside diphosphate, or the reverse reaction. ADP, IDP, GDP, UDP, and CDP can act as donors in the latter case. (From Dorland, 27th ed) EC 2.7.7.8. Polynucleotide Phosphorylase,Nucleotidyltransferase, Polyribonucleotide,Phosphorylase, Polynucleotide
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005095 Exoribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of RNA. It includes EC 3.1.13.-, EC 3.1.14.-, EC 3.1.15.-, and EC 3.1.16.-. EC 3.1.- Exoribonuclease
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
August 1987, The Journal of biological chemistry,
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
April 1980, Journal of molecular biology,
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
January 1985, The Journal of biological chemistry,
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
April 1990, Biochimica et biophysica acta,
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
November 2022, Biochemical and biophysical research communications,
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
May 1982, Science (New York, N.Y.),
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
January 1988, Cell,
E A Roberts, and T L Eisenbraun, and C L Andrews, and D G Bear
January 1982, Molecular & general genetics : MGG,
Copied contents to your clipboard!