Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. 2008

Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105-5051, USA.

Association mapping is an alternative to mapping in a biparental population. A key to successful association mapping is to avoid spurious associations by controlling for population structure. Confirming the marker/trait association in an independent population is necessary for the implementation of the marker in other genetic studies. Two independent soybean populations consisting of advanced breeding lines representing the diversity within maturity groups 00, 0, and I were screened in multi-site, replicated field trials to discover molecular markers associated with iron deficiency chlorosis (IDC), a major yield-limiting factor in soybean. Lines with extreme phenotypes were initially screened to identify simple sequence repeat (SSR) markers putatively associated with the IDC. Marker data collected from all lines were used to control for population structure and kinship relationships. Single factor analysis of variance (SFA) and mixed linear model (MLM) analyses were used to discover marker/trait associations. The MLM analyses, which include population structure, kinship or both factors, reduced the number of markers significantly associated with IDC by 50% compared with SFA. With the MLM approach, three markers were found to be associated with IDC in the first population. Two of these markers, Satt114 and Satt239, were also found to be associated with IDC in the second confirmation population. For both populations, those lines with the tolerance allele at both these two marker loci had significantly lower IDC scores than lines with one or no tolerant alleles.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D010935 Plant Diseases Diseases of plants. Disease, Plant,Diseases, Plant,Plant Disease
D001947 Breeding The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants. Breedings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D000090463 Iron Deficiencies Deficient amounts of iron in the body as a result of blood loss, diets deficient in iron, or an iron uptake or storage disorder. Hypoferritinemia,Iron Deficiency,Latent Iron Deficiency,Sideropenia,Deficiencies, Iron,Deficiencies, Latent Iron,Deficiency, Iron,Deficiency, Latent Iron,Hypoferritinemias,Iron Deficiencies, Latent,Iron Deficiency, Latent,Latent Iron Deficiencies,Sideropenias
D013025 Glycine max An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D018598 Minisatellite Repeats Tandem arrays of moderately repetitive, short (10-60 bases) DNA sequences which are found dispersed throughout the GENOME, at the ends of chromosomes (TELOMERES), and clustered near telomeres. Their degree of repetition is two to several hundred at each locus. Loci number in the thousands but each locus shows a distinctive repeat unit. Minisatellite,Minisatellite Repeat,VNTR Loci,VNTR Region,VNTR Sequence,VNTR Sequences,Variable Number Of Tandem Repeat,Variable Number Tandem Repeat,Variable Number of Tandem Repeats,Variable Tandem Repeat,Minisatellites,Variable Number Tandem Repeats,Variable Tandem Repeats,Loci, VNTR,Locus, VNTR,Region, VNTR,Regions, VNTR,Repeat, Minisatellite,Repeat, Variable Tandem,Repeats, Minisatellite,Repeats, Variable Tandem,Sequence, VNTR,Sequences, VNTR,Tandem Repeat, Variable,Tandem Repeats, Variable,VNTR Locus,VNTR Regions
D032461 Chromosomes, Plant Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS. Chromosome, Plant,Plant Chromosome,Plant Chromosomes
D040641 Quantitative Trait Loci Genetic loci associated with a quantitative trait. Quantitative Trait Loci Genes,Loci, Quantitative Trait,Locus, Quantitative Trait,Quantitative Trait Locus,Trait Loci, Quantitative,Trait Locus, Quantitative

Related Publications

Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
January 2015, Methods in molecular biology (Clifton, N.J.),
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
February 1991, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
February 2011, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
September 2012, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
August 2014, Journal of genetics,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
April 2017, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
March 2010, Planta,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
February 2015, Genetica,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
October 2011, Molecules and cells,
Ju Wang, and Phillip E McClean, and Rian Lee, and R Jay Goos, and Ted Helms
November 2014, Genetics and molecular research : GMR,
Copied contents to your clipboard!