Identification of residues contributing to A2 domain-dependent structural stability in factor VIII and factor VIIIa. 2008

Hironao Wakabayashi, and Philip J Fay
Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642.

Factor VIII circulates as a heterodimer composed of heavy (A1A2B domains) and light (A3C1C2 domains) chains, whereas the contiguous A1A2 domains are separate subunits in the active cofactor, factor VIIIa. Whereas the A1 subunit maintains a stable interaction with the A3C1C2 subunit, the A2 subunit is weakly associated in factor VIIIa and its dissociation accounts for the labile activity of the cofactor. In examining the ceruloplasmin-based factor VIII A domain model, potential hydrogen bonding based upon spatial separations of <2.8A were found between side chains of 14 A2 domain residues and 7 and 9 residues in the A1 and A3 domains, respectively. These residues were individually replaced with Ala, except Tyr residues were replaced with Phe, and proteins stably expressed to examine the contribution of each residue to protein stability. Factor VIII stability at 55 degrees C and factor VIIIa activity were monitored using factor Xa generation assays. Fourteen of 30 factor VIII mutants showed >2-fold increases in either or both decay rates compared with wild type; whereas, 7 mutants showed >2-fold increased rates in factor VIIIa decay compared with factor VIII decay. These results suggested that multiple residues at the A1-A2 and A2-A3 domain interfaces contribute to stabilizing the protein. Furthermore, these data discriminate residues that stabilize interactions in the procofactor from those in the cofactor, where hydrogen bonding in the latter appears to contribute more significantly to stability. This observation is consistent with an altered conformation involving new inter-subunit interactions involving A2 domain following procofactor activation.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005169 Factor VIII Factor VIII of blood coagulation. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin. Coagulation Factor VIII,Factor VIII Clotting Antigen,Factor VIII Coagulant Antigen,Factor VIII Procoagulant Activity,Thromboplastinogen,Blood Coagulation Factor VIII,F VIII-C,Factor 8,Factor 8 C,Factor Eight,Factor VIIIC,Hyate-C,Hyatt-C,F VIII C,Hyate C,HyateC,Hyatt C,HyattC
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine

Related Publications

Hironao Wakabayashi, and Philip J Fay
January 1993, Methods in enzymology,
Hironao Wakabayashi, and Philip J Fay
November 2009, The Journal of biological chemistry,
Hironao Wakabayashi, and Philip J Fay
August 1994, The Journal of biological chemistry,
Hironao Wakabayashi, and Philip J Fay
August 1992, The Journal of biological chemistry,
Copied contents to your clipboard!