Neurovirulent factor ICP34.5 uniquely expressed in the herpes simplex virus type 1 Delta gamma 1 34.5 mutant 1716. 2008

Holly A Holman, and Alasdair R MacLean
Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK. hholman@biochem.utah.edu

The herpes simplex virus type 1 (HSV-1) diploid gene gamma(1)34.5 encodes a neurovirulent factor, infected cell protein 34.5 (ICP34.5). The promoter to gamma(1)34.5 is located within the HSV-1 genome where there are repeated sequences. This region of the genome also contains important overlapping transcripts involved with the virus's ability to establish lytic and latent infections and reactivation. These transcripts include the latency-associated transcripts and regulator proteins ICP0 and ICP4. This study aimed to separate ICP34.5 from these overlapping transcripts and test if its expression from a single gene could restore wild-type HSV-1 strain 17+ virulence. To address these aims, different recombinant viruses were constructed using the Delta gamma(1)34.5 mutant 1716. Immunoblots probed with different ICP34.5 antisera demonstrated that one of the newly generated recombinant viruses, 1622, overexpresses ICP34.5 relative to a panel of wild-type viruses. Interestingly, the overexpression of ICP34.5 does not yield a more virulent virus. The onset of ICP34.5 expression from 1622-infected cells in vitro matched that of 17+, and its expression restored the function of maintaining protein synthesis in human neuroblastoma cells. Replication of 1622, however, was only partially restored to 17+ levels in vivo. Additionally, plaque morphology from 1622-infected cells indicates there is an additional defect. The authors report that the mutant virus 1622 can express ICP34.5 from a single gamma(1)34.5 gene and restore most (but not all) wild-type function. These findings are discussed with respect to the use of the gamma(1)34.5 deleted mutant, 1716, in oncolytic viral vector therapies and future studies for ICP34.5.

UI MeSH Term Description Entries
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005807 Genes, Overlapping Genes whose nucleotide sequences overlap to some degree. The overlapped sequences may involve structural or regulatory genes of eukaryotic or prokaryotic cells. Overlapping Genes,Gene, Overlapping,Overlapping Gene
D005813 Genes, Synthetic Biologically functional sequences of DNA chemically synthesized in vitro. Artificial Genes,Synthetic Genes,Artificial Gene,Gene, Artificial,Gene, Synthetic,Genes, Artificial,Synthetic Gene
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

Holly A Holman, and Alasdair R MacLean
August 1994, The Journal of general virology,
Holly A Holman, and Alasdair R MacLean
April 1992, The Journal of general virology,
Holly A Holman, and Alasdair R MacLean
May 1997, Journal of neurovirology,
Holly A Holman, and Alasdair R MacLean
April 1992, The Journal of general virology,
Copied contents to your clipboard!