Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses. 1991

S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
Institut für Virologie, Justus-Liebig-Universität Giessen, Germany.

Phylogenetic trees were constructed using 38 sequences of the A group and 10 sequences of the B group of the NS gene of influenza A viruses. Within the A group we found avian as well as mammalian influenza a viruses, while within the B group exclusively avian strains were found. The avian and human NS genes of the A group were derived from a common ancestor existing at about 1912. At 13 positions of the amino acid sequences of the NS1 protein two subtypes of the A group can be differentiated, a human and a non-human subtype. Starting at the time of the introduction of an avian PB1 gene into human strains during the antigenic shift at 1957 the NS1 protein of the human strains came under an enhanced selection pressure which might indicate a cooperation of the NS1 protein with and adaptation of the NS1 protein on the newly introduced PB1 gene. Such a selection pressure on the NS2 protein is completely missing. Comparison of all sequences of the NS1 protein revealed four highly conserved regions within the amino-terminal half of the molecule. One of this regions seems to contain the nuclear migration signal. The carboxy-terminal half is completely variable and seems to be dispensable.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
August 2000, The Journal of general virology,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
June 1990, Virus genes,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
February 2001, Proceedings of the National Academy of Sciences of the United States of America,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
December 2005, Virus genes,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
June 1998, Virus research,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
June 1987, Virology,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
January 2016, Veterinary microbiology,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
July 2018, Trends in microbiology,
S Ludwig, and U Schultz, and J Mandler, and W M Fitch, and C Scholtissek
March 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Copied contents to your clipboard!