Mitogen-induced IL-2 production and proliferation at defined stages of T helper cell development. 1991

J F Chang, and C A Thomas, and J T Kung
Department of Microbiology, University of Texas Health Science Center, San Antonio 78284.

Th cell development inside the thymus can be defined on the basis of qualitative and quantitative CD4 and CD8 marker expression and follows the pathway of CD4-8- cells----CD4+8+ cells----CD4+8low cells----CD4+8- cells, which presumably emigrate to seed the periphery and serve as functionally mature Th cells. The various cell subpopulations at defined developmental stages were isolated by electronic cell sorting and examined for mitogen induced IL-2 production and cell proliferation responses. For TCR-alpha beta-bearing CD4+8+ and CD4+8low thymocytes that are actively engaged in positive and negative selection processes, negligible to low levels of IL-2 production and cell proliferation were observed in response to TCR:CD3 triggering or to the combined activation of protein kinase C and calcium mobilization mediated by PMA and ionomycin, respectively. For CD4-8- TCR-alpha beta early thymocytes that have not yet entered the selection process, PMA + ionomycin induced significant cell proliferation but little IL-2 production, in the absence of added IL-1. However, addition of IL-1 caused a powerful induction of IL-2 production that was accompanied by increased cell proliferation. Triggering of the TCR:CD3 complex had no effect on CD4-8-TCR(-)-alpha beta thymocytes as they do not express detectable levels of TCR-alpha beta. For thymus CD4+8- Th cells, the first cells that have completed TCR repertoire selection, vigorous proliferation was observed in response to TCR:CD3 triggering in the presence of added IL-2. However, the development of IL-2 responsiveness was not accompanied by high level IL-2 inducibility as TCR:CD3 triggering caused only marginal IL-2 production. In contrast, spleen CD4+8- T cells, the most "mature" representatives of Th cells, expressed high levels of IL-2 production as well as IL-2 responsiveness in response to TCR:CD3-mediated stimulation. The lack of anti-TCR-induced IL-2 production by thymus CD4+8- T cells was not due to an intrinsic defect as high levels of IL-2 production was induced by PMA + ionomycin. Possible reasons for the temporal acquisition and differential control of IL-2 inducibility and IL-2 responsiveness are discussed in the context of established Th cell development pathway.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

J F Chang, and C A Thomas, and J T Kung
December 1983, Journal of immunology (Baltimore, Md. : 1950),
J F Chang, and C A Thomas, and J T Kung
January 2006, International archives of allergy and immunology,
J F Chang, and C A Thomas, and J T Kung
January 2007, International archives of allergy and immunology,
J F Chang, and C A Thomas, and J T Kung
February 1992, Journal of immunology (Baltimore, Md. : 1950),
J F Chang, and C A Thomas, and J T Kung
August 1992, The Journal of surgical research,
J F Chang, and C A Thomas, and J T Kung
April 2010, Biochemical and biophysical research communications,
J F Chang, and C A Thomas, and J T Kung
January 1989, Journal of toxicology and environmental health,
Copied contents to your clipboard!