From promoter analysis to transcriptional regulatory network prediction using PAINT. 2007

Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
Thomas Jefferson University, Philadelphia, PA, USA.

Highly parallel gene-expression analysis has led to analysis of gene regulation, in particular coregulation, at a system level. Promoter analysis and interaction network toolset (PAINT) was developed to provide the biologist a computational tool to integrate functional genomics data, for example, from microarray-based gene-expression analysis with genomic sequence data to carry out transcriptional regulatory network analysis (TRNA). TRNA combines bioinformatics, used to identify and analyze gene-regulatory regions, and statistical significance testing, used to rank the likelihood of the involvement of individual transcription factors (TF), with visualization tools to identify TF likely to play a role in the cellular process under investigation. In summary, given a list of gene identifiers PAINT can: (1) fetch potential promoter sequences for the genes in the list, (2) find TF-binding sites on the sequences, (3) analyze the TF-binding site occurrences for over/under-representation compared with a reference, with or without coexpression clustering information, and (4) generate multiple visualizations for these analyses. At present, PAINT supports TRNA of the human, mouse, and rat genomes. PAINT is currently available as an online, web-based service located at: http://www.dbi.tju.edu/dbi/tools/paint.

UI MeSH Term Description Entries
D010363 Pattern Recognition, Automated In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed) Automated Pattern Recognition,Pattern Recognition System,Pattern Recognition Systems
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
January 2006, Biotechnology & genetic engineering reviews,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
September 2003, Biochemical and biophysical research communications,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
July 2006, BMC bioinformatics,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
January 2017, Methods in molecular biology (Clifton, N.J.),
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
June 2006, Journal of molecular biology,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
January 2011, Methods in molecular biology (Clifton, N.J.),
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
December 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
January 2017, BioMed research international,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
August 2011, Proceedings of the National Academy of Sciences of the United States of America,
Gregory E Gonye, and Praveen Chakravarthula, and James S Schwaber, and Rajanikanth Vadigepalli
January 2011, PloS one,
Copied contents to your clipboard!