Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. 2008

Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA. martha.bickford@louisville.edu

We examined the synaptic targets of large non-gamma-aminobutyric acid (GABA)-ergic profiles that contain round vesicles and dark mitochondria (RLD profiles) in the perigeniculate nucleus (PGN) and the dorsal lateral geniculate nucleus (dLGN). RLD profiles can provisionally be identified as the collaterals of thalamocortical axons, because their ultrastrucure is distinct from all other previously described dLGN inputs. We also found that RLD profiles are larger than cholinergic terminals and contain the type 2 vesicular glutamate transporter. RLD profiles are distributed throughout the PGN and are concentrated within the interlaminar zones (IZs) of the dLGN, regions distinguished by dense binding of Wisteria floribunda agglutinin (WFA). To determine the synaptic targets of thalamocortical axon collaterals, we examined RLD profiles in the PGN and dLGN in tissue stained for GABA. For the PGN, we found that all RLD profiles make synaptic contacts with GABAergic PGN somata, dendrites, and spines. In the dLGN, RLD profiles primarily synapse with GABAergic dendrites that contain vesicles (F2 profiles) and non-GABAergic dendrites in glomerular arrangements that include triads. Occasional synapses on GABAergic somata and proximal dendrites were also observed in the dLGN. These results suggest that correlated dLGN activity may be enhanced via direct synaptic contacts between thalamocortical cells, whereas noncorrelated activity (such as that occurring during binocular rivalry) could be suppressed via thalamocortical collateral input to PGN cells and dLGN interneurons.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic

Related Publications

Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
April 2019, The European journal of neuroscience,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
November 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
October 1989, The Journal of comparative neurology,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
January 2002, Visual neuroscience,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
March 2010, The Journal of comparative neurology,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
February 1990, The Journal of comparative neurology,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
January 2015, Brain, behavior and evolution,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
October 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
January 2017, Visual neuroscience,
Martha E Bickford, and Haiyang Wei, and Michael A Eisenback, and Ranida D Chomsung, and Arkadiusz S Slusarczyk, and Aygul B Dankowsi
April 1964, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Copied contents to your clipboard!