Expression patterns of three Par-related genes in sea urchin embryos. 2008

Kosuke Shiomi, and Masaaki Yamaguchi
Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.

Partitioning-defective (Par) genes were originally identified in Caenorhabditis elegans and are involved in asymmetric divisions of the egg. Recently, the expression and function of Par orthologs have been elucidated in deuterostomes, including vertebrates. In this study, we isolated three Par-related genes, Par-1, Par-6, and atypical protein kinase C (aPKC), from the sea urchin Hemicentrotus pulcherrimus and examined their temporal and spatial expression patterns during embryogenesis up to the pluteus stage. All three transcripts existed maternally in eggs and were uniformly expressed in cleavage-stage embryos. From the blastula to early gastrula stages, HpPar-1 expression was transiently restricted to the vegetal plate, including the primary mesenchyme cells (PMCs); this transient reduction was followed by uniform expression. HpPar-6 was expressed uniformly throughout development. In contrast, HpaPKC expression changed dramatically during development. At the blastula stage, HpaPKC expression was restricted to the vegetal region, including PMCs and the vegetal plate. During gastrulation, expression was maintained in PMCs and the archenteron tip, but expression declined at the late gastrula stage. From the prism stage, two cell types started to express HpaPKC: ectoderm cells interspersed in the ciliary band and skeletogenic cells at the posterior end of the larva. At the pluteus stage, the stomach began to express HpaPKC, in addition to the interspersed ciliary band and skeletogenic cells.

UI MeSH Term Description Entries
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019521 Body Patterning The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc. Axial Patterning (Embryology),Embryonic Pattern Formation,Polarity of Development,Body Pattern Formation,Body Pattern Specification,Embryonic Pattern Specification,Development Polarity,Embryonic Pattern Formations,Formation, Embryonic Pattern,Pattern Formation, Body,Pattern Formation, Embryonic,Pattern Specification, Body,Pattern Specification, Embryonic,Patterning, Axial (Embryology),Patterning, Body,Specification, Body Pattern,Specification, Embryonic Pattern

Related Publications

Kosuke Shiomi, and Masaaki Yamaguchi
January 2008, Methods in molecular biology (Clifton, N.J.),
Kosuke Shiomi, and Masaaki Yamaguchi
October 1989, Development (Cambridge, England),
Kosuke Shiomi, and Masaaki Yamaguchi
June 1983, Developmental biology,
Kosuke Shiomi, and Masaaki Yamaguchi
June 1985, Developmental biology,
Kosuke Shiomi, and Masaaki Yamaguchi
August 1981, Molecular and cellular biology,
Kosuke Shiomi, and Masaaki Yamaguchi
July 1998, Molecular biology and evolution,
Kosuke Shiomi, and Masaaki Yamaguchi
May 1982, Developmental biology,
Kosuke Shiomi, and Masaaki Yamaguchi
April 1989, Development, growth & differentiation,
Copied contents to your clipboard!