Effect of activin A on dehydroepiandrosterone and testosterone secretion by primary immature porcine Leydig cells. 1991

C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
INSERM CJF n. 90-08, Hôpital Sainte Eugénie, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.

In the present study, we evaluated the effect of the homodimer activin A on immature porcine Leydig cell functions in primary culture. Activin A (0.5-100 ng/ml) reduced hCG-stimulated dehydroepiandrosterone (DHEA) accumulation in a dose- and time-dependent manner, with a maximal inhibitory effect (58% decrease) at 20 ng/ml (8 x 10(-10) M). Activin A was found not to control steroidogenesis, either through a modulation of the gonadotropin LH/hCG binding or low-density lipoprotein cholesterol binding and internalization. However, activin A significantly decreased pregnenolone (p less than 0.002) and DHEA (p less than 0.001) formation (evaluated in the presence of 10(-5) M of WIN 24540, an inhibitor of 3 beta-hydroxysteroid dehydrogenase/isomerase [3 beta-HSDI]activity) in Leydig cells maximally stimulated with hCG (3 ng/ml, 3 h) or incubated in the presence of 22R-hydroxycholesterol (5 micrograms/ml, 2 h). These findings indicate that activin A probably exerts a partial inhibitory effect on cholesterol side-chain cleavage cytochrome P450 (P450scc) activity. On the other hand, activin A significantly (p less than 0.001) enhanced the conversion of exogenous pregnenolone and DHEA (500 ng/ml) but not of progesterone and androstenedione (500 ng/ml) into testosterone, suggesting that activin A potentially enhances 3 beta-HSDI activity in Leydig cells. Activin A action on 3 beta-HSDI activity was found to be closely related to that of transforming growth factor-beta 1 (TGF beta 1), since both activin A (20 ng/ml) and TGF beta 1 (2 ng/ml) induced a comparable and non-additive increase in 3 beta-HSDI activity.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006888 Hydroxycholesterols Cholesterol which is substituted by a hydroxy group in any position.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
September 1984, Canadian journal of physiology and pharmacology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
February 1991, The Journal of steroid biochemistry and molecular biology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
April 1983, Molecular and cellular endocrinology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
November 1997, Endocrinology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
December 1983, Biology of reproduction,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
October 1985, Molecular and cellular endocrinology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
August 1988, Molecular and cellular endocrinology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
February 1993, The Journal of endocrinology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
April 2006, Zhonghua nan ke xue = National journal of andrology,
C Mauduit, and M A Chauvin, and E de Peretti, and A M Morera, and M Benahmed
February 2003, Reproductive biology and endocrinology : RB&E,
Copied contents to your clipboard!