Joining of ribooligonucleotides with T4 RNA ligase and identification of the oligonucleotide-adenylate intermediate. 1976

E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara

T4 RNA ligase was found to join A-A-A-A-A-A and 32pU-U-U-U in the presence of ATP as cofactor. In this reaction the pyrophosphate of pU-U-U-U and pA was isolated by chromatography on a RPC-5 column, besides the joined product and the starting materials. This pyrophosphate was shown to be an intermediate in the joining reaction because of the fact that coupling with A-A-A-A-A-A to give the decanucleotide could be performed in the absence of ATP. The structure of the oligonucleotide-adenylate was determined by enzymatic digestion with base-nonspecific nuclease and venom phosphodiesterase. Futher evidence for the proposed structure was obtained by isolation of the intermediate obtained by using pU-U-U-U and [alpha-32p]ATP. This pyrophosphate gave pA and pU by treatment with venom phosphodiesterase. Several other joining reactions between various purine- and pyrimidine ribooligonucleotides to 5'-phosphorylated ribooligonucleotides are discussed.

UI MeSH Term Description Entries
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011118 Polynucleotide Ligases Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1. Polynucleotide Synthetases,Ligases, Polynucleotide,Synthetases, Polynucleotide
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline

Related Publications

E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
January 1999, Methods in molecular biology (Clifton, N.J.),
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
January 1976, Biochemical and biophysical research communications,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
January 1983, Methods in enzymology,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
September 1974, Proceedings of the National Academy of Sciences of the United States of America,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
September 2003, Nucleic acids research,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
September 1967, The Journal of biological chemistry,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
November 1967, Proceedings of the National Academy of Sciences of the United States of America,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
January 1979, Nucleic acids symposium series,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
April 1982, Biochemistry,
E Ohtsuka, and S Nishikawa, and M Sugiura, and M Ikehara
September 1968, The Journal of biological chemistry,
Copied contents to your clipboard!