Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone. 1991

H S Tenenhouse, and J Lee, and N Harvey
Department of Pediatrics, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada.

The present study was undertaken to examine the interaction of phosphonoformic acid (PFA) with the Na(+)-sulfate cotransporter and the effect of thyroid hormone (triiodothyronine; T3) on Na(+)-dependent sulfate transport and Na(+)-dependent PFA binding in mouse renal brush-border membrane vesicles. PFA inhibits Na(+)-dependent sulfate transport in a competitive manner [apparent inhibitory constant (Ki) = 4.3 +/- 1.1 mM]. T3 administered in pharmacological doses significantly stimulates Na(+)-dependent sulfate transport in renal brush-border membranes compared with vehicle-treated controls. Although T3 has no effect on Na(+)-dependent glucose transport, T3 also stimulates Na(+)-dependent phosphate transport. Kinetic studies demonstrate that T3 increases the apparent maximal velocity (Vmax) for Na(+)-sulfate cotransport without changing the apparent Michaelis constant (Km). T3 does not significantly affect either Na(+)-dependent PFA binding or the phosphate- and sulfate-displaceable components of Na(+)-dependent PFA binding. Finally, Na(+)-dependent brush-border membrane sulfate transport is unchanged in phosphate-deprived mice that exhibit increased Na(+)-phosphate cotransport and in X-linked Hyp mice that exhibit impaired Na(+)-phosphate cotransport. The present results demonstrate that 1) PFA is a competitive inhibitor of Na(+)-sulfate cotransport, 2) T3 stimulates Na(+)-dependent sulfate, as well as Na(+)-dependent phosphate transport, but has no effect on PFA binding, and 3) phosphate deprivation and the X-linked Hyp mutation do not influence Na(+)-sulfate cotransport.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010746 Phosphonoacetic Acid A simple organophosphorus compound that inhibits DNA polymerase, especially in viruses and is used as an antiviral agent. Phosphonoacetate,Disodium Phosphonoacetate,Fosfonet Sodium,Phosphonacetic Acid,Phosphonoacetate, Disodium
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

H S Tenenhouse, and J Lee, and N Harvey
January 1999, Kidney international,
H S Tenenhouse, and J Lee, and N Harvey
June 1989, Biochemical and biophysical research communications,
H S Tenenhouse, and J Lee, and N Harvey
September 1992, The Journal of biological chemistry,
H S Tenenhouse, and J Lee, and N Harvey
November 1992, The Journal of biological chemistry,
H S Tenenhouse, and J Lee, and N Harvey
April 1987, Pflugers Archiv : European journal of physiology,
H S Tenenhouse, and J Lee, and N Harvey
January 1981, Gastroenterology,
H S Tenenhouse, and J Lee, and N Harvey
February 1982, The Journal of biological chemistry,
H S Tenenhouse, and J Lee, and N Harvey
January 1984, Biochimica et biophysica acta,
H S Tenenhouse, and J Lee, and N Harvey
May 1989, The American journal of physiology,
H S Tenenhouse, and J Lee, and N Harvey
May 1990, The American journal of physiology,
Copied contents to your clipboard!