Backbone dynamics of the 18.5 kDa isoform of myelin basic protein reveals transient alpha-helices and a calmodulin-binding site. 2008

David S Libich, and George Harauz
Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada.

The 18.5 kDa isoform of myelin basic protein (MBP) is the predominant form in adult human central nervous system myelin. It is an intrinsically disordered protein that functions both in membrane adhesion, and as a linker connecting the oligodendrocyte membrane to the underlying cytoskeleton; its specific interactions with calmodulin and SH3-domain containing proteins suggest further multifunctionality in signaling. Here, we have used multidimensional heteronuclear nuclear magnetic resonance spectroscopy to study the conformational dependence on environment of the protein in aqueous solution (100 mM KCl) and in a membrane-mimetic solvent (30% TFE-d(2)), particularly to analyze its secondary structure using chemical shift indexing, and to investigate its backbone dynamics using (15)N spin relaxation measurements. Collectively, the data revealed three major segments of the protein with a propensity toward alpha-helicity that was stabilized by membrane-mimetic conditions: T33-D46, V83-T92, and T142-L154 (murine 18.5 kDa sequence numbering). All of these regions corresponded with bioinformatics predictions of ordered secondary structure. The V83-T92 region comprises a primary immunodominant epitope that had previously been shown by site-directed spin labeling and electron paramagnetic resonance spectroscopy to be alpha-helical in membrane-reconstituted systems. The T142-L154 segment overlapped with a predicted calmodulin-binding site. Chemical shift perturbation experiments using labeled MBP and unlabeled calmodulin demonstrated a dramatic conformational change in MBP upon association of the two proteins, and were consistent with the C-terminal segment of MBP being the primary binding site for calmodulin.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D020033 Protein Isoforms Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING. Isoform,Isoforms,Protein Isoform,Protein Splice Variant,Splice Variants, Protein,Protein Splice Variants,Isoform, Protein,Isoforms, Protein,Splice Variant, Protein,Variant, Protein Splice,Variants, Protein Splice

Related Publications

David S Libich, and George Harauz
May 2013, Journal of neurochemistry,
David S Libich, and George Harauz
November 2000, Protein expression and purification,
David S Libich, and George Harauz
October 2003, Journal of molecular modeling,
David S Libich, and George Harauz
November 2010, Biophysical journal,
David S Libich, and George Harauz
January 2000, Biochimica et biophysica acta,
David S Libich, and George Harauz
November 2012, Biochimica et biophysica acta,
Copied contents to your clipboard!