Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. 1991

F K Gyoeva, and V I Gelfand
Institute of Protein Research, Academy of Sciences of the USSR, Pushchino, Moscow.

Intermediate filaments in most types of cultured cells coalign with microtubules. Depolymerization of microtubules results in collapse of vimentin and desmin intermediate filaments to the nucleus where they form a perinuclear cap. Collapse can also be induced by microinjection of antibodies against intermediate filament or microtubule proteins. Thus, two filament systems interact with each other. But the molecules mediating this interaction are unknown. One of the candidates for this role is a microtubule motor kinesin. Recent data showed that kinesin is involved in the plus end-directed movement of the membranous organelles along microtubules such as radial extension of lysosomes in macrophages and centrifugal movement of pigment in melanophores. Here we report that injection of the anti-kinesin antibody into human fibroblasts results in the redistribution of intermediate filaments to a tight perinuclear aggregate but had no effect on the distribution of microtubules. Thus, kinesin is involved not only in organelle movement but also in interaction of the two major cytoskeletal systems, intermediate filaments and microtubules.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

F K Gyoeva, and V I Gelfand
November 1995, Doklady Akademii nauk,
F K Gyoeva, and V I Gelfand
June 2021, Nature communications,
F K Gyoeva, and V I Gelfand
May 2010, The Journal of cell biology,
F K Gyoeva, and V I Gelfand
December 1995, The Journal of cell biology,
F K Gyoeva, and V I Gelfand
January 2002, Journal of muscle research and cell motility,
F K Gyoeva, and V I Gelfand
January 1976, Essays in biochemistry,
Copied contents to your clipboard!