Misincorporation of amino acid analogues into proteins by biosynthesis. 2008

Kenneth J Rodgers, and Nae Shiozawa
The Cell Biology Group, The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, Sydney, NSW 2050, Australia. rodgersk@hri.org.au

Despite astounding diversity in their structure and function, proteins are constructed from 22 protein or 'canonical' amino acids. Hundreds of amino acid analogues exist; many occur naturally in plants, some are synthetically produced or can be produced in vivo by oxidation of amino acid side-chains. Certain structural analogues of the protein amino acids can escape detection by the cellular machinery for protein synthesis and become misincorporated into the growing polypeptide chain of proteins to generate non-native proteins. In this review we seek to provide a comprehensive overview of the current knowledge on the biosynthetic incorporation of amino acid analogues into proteins by mammalian cells. We highlight factors influencing their incorporation and how the non-native proteins generated can alter cell function. We examine the ability of amino acid analogues, representing those commonly found in damaged proteins in pathological tissues, to be misincorporated into proteins by cells in vitro, providing us with a useful tool in the laboratory to generate modified proteins representing those present in a wide-range of pathologies. We also discuss the evidence for amino acid analogue incorporation in vivo and its association with autoimmune symptoms. We confine the review to studies in which the synthetic machinery of cell has not been modified to accept non-protein amino acids.

UI MeSH Term Description Entries
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002172 Canavanine
D005001 Ethionine 2-Amino-4-(ethylthio)butyric acid. An antimetabolite and methionine antagonist that interferes with amino acid incorporation into proteins and with cellular ATP utilization. It also produces liver neoplasms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000599 Amino Acids, Diamino Amino Acids, Dibasic,Diamino Amino Acids,Dibasic Amino Acids,Acids, Diamino Amino,Acids, Dibasic Amino

Related Publications

Kenneth J Rodgers, and Nae Shiozawa
January 2018, Biotechnology advances,
Kenneth J Rodgers, and Nae Shiozawa
December 2018, Biochemistry,
Kenneth J Rodgers, and Nae Shiozawa
March 1977, Biochimica et biophysica acta,
Kenneth J Rodgers, and Nae Shiozawa
December 2014, Current opinion in biotechnology,
Kenneth J Rodgers, and Nae Shiozawa
November 1960, Proceedings of the National Academy of Sciences of the United States of America,
Kenneth J Rodgers, and Nae Shiozawa
July 2016, Advances in nutrition (Bethesda, Md.),
Kenneth J Rodgers, and Nae Shiozawa
January 2010, The American journal of clinical nutrition,
Kenneth J Rodgers, and Nae Shiozawa
September 2018, Nucleic acids research,
Copied contents to your clipboard!